論文の概要: Geometric Learning of Canonical Parameterizations of $2D$-curves
- arxiv url: http://arxiv.org/abs/2509.26070v1
- Date: Tue, 30 Sep 2025 10:45:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:45:00.103834
- Title: Geometric Learning of Canonical Parameterizations of $2D$-curves
- Title(参考訳): 2D$カーブの標準パラメータ化の幾何学的学習
- Authors: Ioana Ciuclea, Giorgio Longari, Alice Barbara Tumpach,
- Abstract要約: 対称性を学ぶニューラルネットワークを構築する一般的な方法は、データ拡張を使用することである。
主繊維束の断面の概念に基づいて対称性を変調する別の方法を提案する。
このフレームワークは、対称群の下での物体の軌道間の相同性を測定するために、オブジェクトの空間上の単純な測度を使用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most datasets encountered in computer vision and medical applications present symmetries that should be taken into account in classification tasks. A typical example is the symmetry by rotation and/or scaling in object detection. A common way to build neural networks that learn the symmetries is to use data augmentation. In order to avoid data augmentation and build more sustainable algorithms, we present an alternative method to mod out symmetries based on the notion of section of a principal fiber bundle. This framework allows the use of simple metrics on the space of objects in order to measure dissimilarities between orbits of objects under the symmetry group. Moreover, the section used can be optimized to maximize separation of classes. We illustrate this methodology on a dataset of contours of objects for the groups of translations, rotations, scalings and reparameterizations. In particular, we present a $2$-parameter family of canonical parameterizations of curves, containing the constant-speed parameterization as a special case, which we believe is interesting in its own right. We hope that this simple application will serve to convey the geometric concepts underlying this method, which have a wide range of possible applications. The code is available at the following link: $\href{https://github.com/GiLonga/Geometric-Learning}{https://github.com/GiLonga/Geometric-Learning}$. A tutorial notebook showcasing an application of the code to a specific dataset is available at the following link: $\href{https://github.com/ioanaciuclea/geometric-learning-notebook}{https://github.com/ioanaciuclea/geometric-learning-notebook}$
- Abstract(参考訳): コンピュータビジョンや医療応用で遭遇するほとんどのデータセットは、分類タスクで考慮すべき対称性を提示する。
典型的な例は、物体検出における回転および/またはスケーリングによる対称性である。
対称性を学ぶニューラルネットワークを構築する一般的な方法は、データ拡張を使用することである。
そこで本研究では,データ拡張を回避し,より持続可能なアルゴリズムを構築するために,主繊維束の断面概念に基づいて対称性を変調する代替手法を提案する。
このフレームワークは、対称群の下での物体の軌道間の相同性を測定するために、オブジェクトの空間上の単純な測度を使用することができる。
さらに、使用したセクションはクラス分離を最大化するために最適化することができる。
本手法は, 翻訳, 回転, スケーリング, 再パラメータ化のためのオブジェクトの輪郭のデータセット上に記述する。
特に、曲線の標準パラメータ化の 2$-parameter 族を示し、これは特別な場合として定数速度パラメータ化を含む。
この単純な応用が、この手法の根底にある幾何学的概念を伝えるのに役立つことを願っている。
コードは以下のリンクで入手できる。 $\href{https://github.com/GiLonga/Geometric-Learning}{https://github.com/GiLonga/Geometric-Learning}$
$\href{https://github.com/ioanaciuclea/geometric-learning-notebook}{https://github.com/ioanaciuclea/geometric-learning-notebook}$
関連論文リスト
- Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
1-パラメータ群で定義された変換に基づく新しい対称性学習アルゴリズムを提案する。
この手法は最小限の帰納バイアスに基づいて構築され、リー群に根付いた一般的な対称性だけでなく、非線形発生器由来の対称性にまで拡張される。
論文 参考訳(メタデータ) (2024-10-29T08:28:23Z) - Scale Equivariant Graph Metanetworks [20.445135424921908]
本稿では,入力が関数自身である学習機能という,新たな機械学習パラダイムについて述べる。
我々は、スケーリング対称性を取り入れたグラフメタネットワーク(メッセージパッシング)パラダイムを適用するフレームワークである、$textitScale Equivariant Graph MetaNetworks - ScaleGMNs$を提案する。
論文 参考訳(メタデータ) (2024-06-15T16:41:04Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
ラベル付きデータセットに存在する連続した対称性群の検出と同定のためのディープラーニングアルゴリズムを設計する。
完全に接続されたニューラルネットワークを用いて、変換対称性と対応するジェネレータをモデル化する。
また,Lie群とその性質の数学的研究に機械学習アプローチを使うための扉を開く。
論文 参考訳(メタデータ) (2023-01-13T16:25:25Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - LieGG: Studying Learned Lie Group Generators [1.5293427903448025]
ニューラルネットワークに組み込まれた対称性は、データを保存して学習することで、幅広いタスクに対して非常に有益であるように思える。
本稿では,ニューラルネットワークが学習した対称性を抽出し,ネットワークの不変度を評価する手法を提案する。
論文 参考訳(メタデータ) (2022-10-09T20:42:37Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
学習不可能なプロトタイプをベースとした非パラメトリックセマンティックセマンティックセマンティクスモデルを提案する。
我々のフレームワークは、いくつかのデータセットに対して魅力的な結果をもたらす。
この作業が、現在のデファクトセマンティックセグメンテーションモデル設計を再考することを期待しています。
論文 参考訳(メタデータ) (2022-03-28T21:15:32Z) - Hyperbolic Vision Transformers: Combining Improvements in Metric
Learning [116.13290702262248]
計量学習のための新しい双曲型モデルを提案する。
本手法のコアとなるのは、双曲空間にマッピングされた出力埋め込みを備えた視覚変換器である。
4つのデータセットに6つの異なる定式化を施したモデルの評価を行った。
論文 参考訳(メタデータ) (2022-03-21T09:48:23Z) - Parametric UMAP embeddings for representation and semi-supervised
learning [0.03823356975862005]
UMAPは、構造化データの低次元埋め込みを見つけるための非パラメトリックグラフに基づく次元減少アルゴリズムである。
パラメトリックUMAPは,学習されたパラメトリックマッピングの利点を考慮しつつ,非パラメトリックマップと同等に動作することを示す。
次に、UMAPを正規化として検討し、オートエンコーダの潜伏分布を制限し、パラメトリック的に変化したグローバル構造保存を行い、半教師付き学習における分類器の精度を向上させる。
論文 参考訳(メタデータ) (2020-09-27T23:45:00Z) - Meta-Learning Symmetries by Reparameterization [63.85144439337671]
データから対応するパラメータ共有パターンを学習し、等価性をネットワークに学習し、符号化する手法を提案する。
本実験は,画像処理タスクで使用される共通変換に等価性をエンコードして自動的に学習できることを示唆する。
論文 参考訳(メタデータ) (2020-07-06T17:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。