論文の概要: The Hunger Game Debate: On the Emergence of Over-Competition in Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2509.26126v1
- Date: Tue, 30 Sep 2025 11:44:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:45:00.118727
- Title: The Hunger Game Debate: On the Emergence of Over-Competition in Multi-Agent Systems
- Title(参考訳): ハンガーゲーム論争:マルチエージェントシステムにおける過剰競争の発端について
- Authors: Xinbei Ma, Ruotian Ma, Xingyu Chen, Zhengliang Shi, Mengru Wang, Jen-tse Huang, Qu Yang, Wenxuan Wang, Fanghua Ye, Qingxuan Jiang, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Hai Zhao, Zhaopeng Tu, Xiaolong Li, Linus,
- Abstract要約: 本稿では,超高圧下のエージェントが信頼できない有害な行動を示すマルチエージェント論争における過剰競争について検討する。
この現象を研究するために,ゼロサム競争領域下での議論をシミュレートする新しい実験フレームワークであるHATEを提案する。
- 参考スコア(独自算出の注目度): 90.96738882568224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-based multi-agent systems demonstrate great potential for tackling complex problems, but how competition shapes their behavior remains underexplored. This paper investigates the over-competition in multi-agent debate, where agents under extreme pressure exhibit unreliable, harmful behaviors that undermine both collaboration and task performance. To study this phenomenon, we propose HATE, the Hunger Game Debate, a novel experimental framework that simulates debates under a zero-sum competition arena. Our experiments, conducted across a range of LLMs and tasks, reveal that competitive pressure significantly stimulates over-competition behaviors and degrades task performance, causing discussions to derail. We further explore the impact of environmental feedback by adding variants of judges, indicating that objective, task-focused feedback effectively mitigates the over-competition behaviors. We also probe the post-hoc kindness of LLMs and form a leaderboard to characterize top LLMs, providing insights for understanding and governing the emergent social dynamics of AI community.
- Abstract(参考訳): LLMベースのマルチエージェントシステムは、複雑な問題に対処する大きな可能性を示しているが、競合がどのようにその振る舞いを形作るかは未解明のままである。
本稿では,過度に圧力がかかるエージェントが,コラボレーションとタスクパフォーマンスの両方を損なう,信頼できない有害な行動を示すマルチエージェント討論における過剰競争について検討する。
この現象を研究するために,ゼロサム競争領域下での議論をシミュレートする新しい実験フレームワークであるHATE, the Hunger Game Debateを提案する。
実験により, 競争圧が過剰競争行動を著しく刺激し, タスク性能を低下させ, 議論が脱線することが明らかとなった。
さらに,判断の変種を追加することによって環境フィードバックの影響について検討し,課題中心のフィードバックが過剰競争行動を効果的に緩和することを示す。
また、LLMのポストホックな優しさを探求し、トップLLMを特徴づけるためのリーダーボードを形成し、AIコミュニティの創発的な社会的ダイナミクスを理解し、管理するための洞察を提供する。
関連論文リスト
- LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions [35.71511502901056]
大規模言語モデル(LLM)は、コラボレーションインテリジェンスのコンポーネントとして、マルチエージェントシステムにますます多くデプロイされている。
LLMが過去の印象からの信頼をいかに形成し、誤報に抵抗し、相互作用中にピアインプットを統合するかを検討する。
KAIROSは、クイズコンテストをシミュレーションするベンチマークで、信頼性の異なるピアエージェントを提示する。
論文 参考訳(メタデータ) (2025-08-24T09:58:10Z) - An Empirical Study of Group Conformity in Multi-Agent Systems [0.26999000177990923]
本研究では,Large Language Models (LLMs) が,5つの論点に関する議論を通じて世論を形成する方法について考察する。
2500以上の議論をシミュレートすることで、当初中立なエージェントが中心的な処分を課し、時間とともに特定のスタンスを採用するかを分析します。
論文 参考訳(メタデータ) (2025-06-02T05:22:29Z) - Debate Only When Necessary: Adaptive Multiagent Collaboration for Efficient LLM Reasoning [8.800516398660069]
大規模言語モデル(LLM)の推論能力を高めるための,有望なフレームワークとして,マルチエージェントコラボレーションが登場した。
本稿では,エージェントの初期応答の信頼性スコアに基づいて,議論を選択的に活性化する適応型マルチエージェント討論フレームワークであるDebate Only When Necessary (DOWN)を提案する。
ダウンは最大6倍の効率向上を実現し、既存のメソッドのパフォーマンスを保留する。
論文 参考訳(メタデータ) (2025-04-07T13:17:52Z) - Learning to Break: Knowledge-Enhanced Reasoning in Multi-Agent Debate System [16.830182915504555]
マルチエージェント討論システム(MAD)は、真理を追求する人間の議論の過程を模倣する。
様々なエージェントが、限られた知識の背景から、適切に、高度に一貫した認知をさせることは困難である。
本稿では,Underline Knowledge-underlineEnhanced frameworkを用いたUnderlineMulti-underlineAgent UnderlineDebateを提案する。
論文 参考訳(メタデータ) (2023-12-08T06:22:12Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Avalon をテストベッドとして使用し,システムプロンプトを用いてゲームプレイにおける LLM エージェントの誘導を行う。
本稿では,Avalonに適した新しいフレームワークを提案し,効率的なコミュニケーションと対話を容易にするマルチエージェントシステムを提案する。
その結果、適応エージェントの作成におけるフレームワークの有効性を確認し、動的社会的相互作用をナビゲートするLLMベースのエージェントの可能性を提案する。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。