論文の概要: ExoPredicator: Learning Abstract Models of Dynamic Worlds for Robot Planning
- arxiv url: http://arxiv.org/abs/2509.26255v2
- Date: Wed, 01 Oct 2025 01:58:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-02 12:11:26.809653
- Title: ExoPredicator: Learning Abstract Models of Dynamic Worlds for Robot Planning
- Title(参考訳): ExoPredicator:ロボット計画のための動的世界の抽象モデル学習
- Authors: Yichao Liang, Dat Nguyen, Cambridge Yang, Tianyang Li, Joshua B. Tenenbaum, Carl Edward Rasmussen, Adrian Weller, Zenna Tavares, Tom Silver, Kevin Ellis,
- Abstract要約: 本研究では,内因性行動とメカニズムの両方について,シンボル的状態表現と因果過程を共同で学習する抽象世界モデルのためのフレームワークを提案する。
シミュレーションされた5つのテーブルトップロボット環境の中で、学習されたモデルは、より多くのオブジェクトとより複雑な目標を持つ保留タスクに一般化した高速な計画を可能にし、幅広いベースラインを上回ります。
- 参考スコア(独自算出の注目度): 77.49815848173613
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Long-horizon embodied planning is challenging because the world does not only change through an agent's actions: exogenous processes (e.g., water heating, dominoes cascading) unfold concurrently with the agent's actions. We propose a framework for abstract world models that jointly learns (i) symbolic state representations and (ii) causal processes for both endogenous actions and exogenous mechanisms. Each causal process models the time course of a stochastic cause-effect relation. We learn these world models from limited data via variational Bayesian inference combined with LLM proposals. Across five simulated tabletop robotics environments, the learned models enable fast planning that generalizes to held-out tasks with more objects and more complex goals, outperforming a range of baselines.
- Abstract(参考訳): 世界はエージェントの作用によって変化するだけでなく、外因性プロセス(例えば、水温、ドミノのカスケード)がエージェントの作用と同時に展開するからである。
共同で学習する抽象世界モデルのためのフレームワークを提案する。
(i)記号的状態表現及び記号的状態表現
(II)内因性行動と外因性機構の両方の因果過程。
各因果過程は確率的因果関係の時間経過をモデル化する。
LLM提案と組み合わせた変分ベイズ推定により,これらの世界モデルを限定データから学習する。
シミュレーションされた5つのテーブルトップロボット環境の中で、学習されたモデルは、より多くのオブジェクトとより複雑な目標を持つ保留タスクに一般化した高速な計画を可能にし、幅広いベースラインを上回ります。
関連論文リスト
- SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model [88.04128601981145]
汎用エージェント推論のための目標指向アーキテクチャであるSimuRAを紹介する。
モデルネームは、シミュレーションによる計画のための世界モデルを導入することで、自己回帰推論の限界を克服する。
特に、ワールドモデルベースのプランニングは、自己回帰プランニングよりも最大124%の一貫性のあるアドバンテージを示している。
論文 参考訳(メタデータ) (2025-07-31T17:57:20Z) - Curiosity-Driven Imagination: Discovering Plan Operators and Learning Associated Policies for Open-World Adaptation [7.406934849952094]
動的で不確実な環境に素早く適応することは、ロボット工学における大きな課題である。
従来のタスク・アンド・モーション・プランニングアプローチは、予期せぬ変化に対処し、適応するときにデータ非効率であり、学習中に世界モデルを活用するのに苦労する。
我々はこの問題を、2つのモデルを統合するハイブリッド計画学習システムで解決する: 遷移を学習し、固有の好奇性モジュール(ICM)による探索を駆動する低レベルニューラルネットワークベースモデル。
シーケンシャル・ノベルティ・インジェクションを用いたロボット操作領域における評価は、我々のアプローチがより高速に収束し、最先端のハイブリッド手法より優れていることを示す。
論文 参考訳(メタデータ) (2025-03-06T20:02:26Z) - Simplifying Latent Dynamics with Softly State-Invariant World Models [10.722955763425228]
エージェントの動作をより予測可能なものにするために、潜時力学を規則化する世界モデルであるParsimonious Latent Space Model (PLSM)を導入する。
我々の正規化は下流タスクの精度、一般化、性能を改善する。
論文 参考訳(メタデータ) (2024-01-31T13:52:11Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
実世界のシナリオにおけるMLLMの計画能力を評価するベンチマークであるEgoPlan-Benchを紹介する。
EgoPlan-Benchは、人間レベルのタスクプランニングを実現するためのMLLMの改善のかなりの範囲を浮き彫りにする。
また,EgoPlan-Bench上でのモデル性能を効果的に向上する特殊命令チューニングデータセットであるEgoPlan-ITを提案する。
論文 参考訳(メタデータ) (2023-12-11T03:35:58Z) - CoPAL: Corrective Planning of Robot Actions with Large Language Models [7.944803163555092]
本稿では,認知レベル間のシームレスな相互作用を編成し,推論,計画,動作生成を包含するシステムアーキテクチャを提案する。
中心となるのは、生成した計画における物理的に基底的、論理的、セマンティックなエラーを処理する、新しいリプラン戦略である。
論文 参考訳(メタデータ) (2023-10-11T07:39:42Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Relax, it doesn't matter how you get there: A new self-supervised
approach for multi-timescale behavior analysis [8.543808476554695]
我々は,2つの新しい構成要素を組み合わせた行動のマルチタスク表現学習モデルを開発した。
我々のモデルは、全体およびすべてのグローバルタスクにおいて、9つのフレームレベルタスクのうち7つのうち1番目または2番目をランク付けします。
論文 参考訳(メタデータ) (2023-03-15T17:58:48Z) - Curious Exploration via Structured World Models Yields Zero-Shot Object
Manipulation [19.840186443344]
そこで本研究では,制御ループに帰納バイアスを組み込む構造的世界モデルを用いて,サンプル効率の高い探索を実現することを提案する。
提案手法は,早期にオブジェクトと対話し始める自由プレイ動作を生成し,時間とともにより複雑な動作を発達させる。
論文 参考訳(メタデータ) (2022-06-22T22:08:50Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。