論文の概要: Semantic-Driven AI Agent Communications: Challenges and Solutions
- arxiv url: http://arxiv.org/abs/2510.00381v1
- Date: Wed, 01 Oct 2025 00:52:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.30891
- Title: Semantic-Driven AI Agent Communications: Challenges and Solutions
- Title(参考訳): 意味駆動型AIエージェントコミュニケーション - 課題と解決策
- Authors: Kaiwen Yu, Mengying Sun, Zhijin Qin, Xiaodong Xu, Ping Yang, Yue Xiao, Gang Wu,
- Abstract要約: 本稿では,意味駆動型AIエージェント通信フレームワークを提案する。
第一に、意味適応伝達は、様々な環境にモデルを効率的に適応させるために、実または生成サンプルと微調整を適用する。
第二に、セマンティック・ライトウェイト・トランスミッションはプルーニング、量子化、知覚対応サンプリングを取り入れ、モデルの複雑さを低減し、エッジエージェントの計算負担を軽減する。
第三に、セマンティックな自己進化制御では、分散階層的な意思決定を用いて多次元資源を最適化し、動的環境における堅牢なマルチエージェント協調を可能にする。
- 参考スコア(独自算出の注目度): 25.74271088658268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid growth of intelligent services, communication targets are shifting from humans to artificial intelligent (AI) agents, which require new paradigms to enable real-time perception, decision-making, and collaboration. Semantic communication, which conveys task-relevant meaning rather than raw data, offers a promising solution. However, its practical deployment remains constrained by dynamic environments and limited resources. To address these issues, this article proposes a semantic-driven AI agent communication framework and develops three enabling techniques. First, semantic adaptation transmission applies fine-tuning with real or generative samples to efficiently adapt models to varying environments. Second, semantic lightweight transmission incorporates pruning, quantization, and perception-aware sampling to reduce model complexity and alleviate computational burden on edge agents. Third, semantic self-evolution control employs distributed hierarchical decision-making to optimize multi-dimensional resources, enabling robust multi-agent collaboration in dynamic environments. Simulation results show that the proposed solutions achieve faster convergence and stronger robustness, while the proposed distributed hierarchical optimization method significantly outperforms conventional decision-making schemes, highlighting its potential for AI agent communication networks.
- Abstract(参考訳): インテリジェントサービスの急速な成長に伴い、コミュニケーションターゲットは人間から人工知能(AI)エージェントへとシフトし、リアルタイムの認識、意思決定、コラボレーションを可能にするために新しいパラダイムを必要としている。
生データではなくタスク関連の意味を伝達するセマンティックコミュニケーションは、有望なソリューションを提供する。
しかし、その実践的な展開は、動的環境と限られたリソースによって制約されている。
これらの課題に対処するため、本論文では、意味駆動型AIエージェント通信フレームワークを提案し、3つの実現可能な技術を開発した。
第一に、意味適応伝達は、様々な環境にモデルを効率的に適応させるために、実または生成サンプルと微調整を適用する。
第二に、セマンティック・ライトウェイト・トランスミッションはプルーニング、量子化、知覚対応サンプリングを取り入れ、モデルの複雑さを低減し、エッジエージェントの計算負担を軽減する。
第三に、セマンティックな自己進化制御では、分散階層的な意思決定を用いて多次元資源を最適化し、動的環境における堅牢なマルチエージェント協調を可能にする。
シミュレーションの結果,提案手法はより高速な収束と強靭性を実現する一方,分散階層最適化手法は従来の意思決定手法よりも優れており,AIエージェント通信ネットワークの可能性を強調している。
関連論文リスト
- Adaptive and Resource-efficient Agentic AI Systems for Mobile and Embedded Devices: A Survey [11.537225726120495]
ファンデーションモデルは、断片化されたアーキテクチャをマルチモーダル推論とコンテキスト適応を備えたスケーラブルなバックボーンに統一することで、AIを再構築した。
FMを認知のコアとして、エージェントは自律性、一般化、自己回帰を達成するためにルールベースの振る舞いを超越する。
この調査は、適応的でリソース効率の良いエージェントAIシステムの、最初の体系的な特徴を提供する。
論文 参考訳(メタデータ) (2025-09-30T02:37:52Z) - UserCentrix: An Agentic Memory-augmented AI Framework for Smart Spaces [8.111700384985356]
エージェントAIは、自律的で積極的な意思決定とともに、スマート環境を変革した。
本稿では、動的でコンテキスト対応な意思決定を通じてスマートスペースを強化するために設計された、エージェント型メモリ拡張AIフレームワークであるUserCentrixを紹介する。
論文 参考訳(メタデータ) (2025-05-01T11:54:49Z) - Multi-Task Semantic Communications via Large Models [42.42961176008125]
適応型モデル圧縮戦略とフェデレートされた分割微調整アプローチを含む,LAMベースのマルチタスクSemComアーキテクチャを提案する。
近年のローカルおよびグローバルな知識ベースを合成するために,検索拡張生成方式が実装されている。
論文 参考訳(メタデータ) (2025-03-28T00:57:34Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
本稿では、モデル定式化のための生成人工知能(AI)エージェントを開発し、送信戦略の設計に専門家(MoE)の混合を適用した。
具体的には,大規模言語モデル(LLM)を活用して対話型モデリングパラダイムを構築する。
定式化問題の解法として, MoE-proximal Policy Optimization (PPO) アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-14T03:44:54Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Distributed Finite-Sum Constrained Optimization subject to Nonlinearity
on the Node Dynamics [6.211043407287827]
マルチエージェントネットワーク(MAN)上の凸最適化問題を解くために,分散有限サム(固定サム)割り当て手法を検討する。
本稿では、最適化問題に対する様々な非線形性制約が、分散セットアップ(ネットワーク上の)を介して異なるアプリケーションに対してどのように対処できるかを論じる。
論文 参考訳(メタデータ) (2022-03-28T06:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。