論文の概要: Progressively Sampled Equality-Constrained Optimization
- arxiv url: http://arxiv.org/abs/2510.00417v1
- Date: Wed, 01 Oct 2025 01:58:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.329834
- Title: Progressively Sampled Equality-Constrained Optimization
- Title(参考訳): 漸進的にサンプリングされた等式制約最適化
- Authors: Frank E. Curtis, Lingjun Guo, Daniel P. Robinson,
- Abstract要約: このアルゴリズムの主な考え方は、等式制約付き問題の列を解くことであり、それぞれが有限個の制約関数項のサンプルを含む。
一連のテスト問題を用いた数値実験の結果,提案手法が実際に有効であることを示す。
- 参考スコア(独自算出の注目度): 4.8718671103376865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An algorithm is proposed, analyzed, and tested for solving continuous nonlinear-equality-constrained optimization problems where the constraints are defined by an expectation or an average over a large (finite) number of terms. The main idea of the algorithm is to solve a sequence of equality-constrained problems, each involving a finite sample of constraint-function terms, over which the sample set grows progressively. Under assumptions about the constraint functions and their first- and second-order derivatives that are reasonable in some real-world settings of interest, it is shown that -- with a sufficiently large initial sample -- solving a sequence of problems defined through progressive sampling yields a better worst-case sample complexity bound compared to solving a single problem with a full set of samples. The results of numerical experiments with a set of test problems demonstrate that the proposed approach can be effective in practice.
- Abstract(参考訳): 制約が期待値あるいは(一定の)項数の平均値によって定義される連続非線形等式制約最適化問題の解法として,アルゴリズムを提案し,解析し,検証した。
このアルゴリズムの主な考え方は、等式制約付き問題の列を解くことであり、それぞれが有限個の制約関数項のサンプルを含む。
実世界の興味のある設定で妥当な制約関数とその1階と2階の導関数に関する仮定の下では、(十分に大きな初期サンプルで)プログレッシブサンプリングによって定義された一連の問題を解くことで、サンプルの完全なセットで1つの問題を解くよりも、最悪のサンプルの複雑さが制限される。
一連のテスト問題を用いた数値実験の結果,提案手法が実際に有効であることを示す。
関連論文リスト
- Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints [49.76332265680669]
本稿では、目的関数と制約関数の両方が弱凸である問題の重要な部分集合について検討する。
既存の手法では、収束速度の遅さや二重ループ設計への依存など、しばしば制限に直面している。
これらの課題を克服するために,新しい単一ループペナルティに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-21T17:15:48Z) - Randomized algorithms and PAC bounds for inverse reinforcement learning in continuous spaces [47.907236421762626]
本研究は、連続状態と作用空間を持つ離散時間割引マルコフ決定過程を研究する。
まず、専門家の政策全体にアクセスでき、逆問題に対する解決策の集合を特徴づけるケースについて考察する。
論文 参考訳(メタデータ) (2024-05-24T12:53:07Z) - Primal Methods for Variational Inequality Problems with Functional Constraints [25.261426717550293]
本稿では,関数的制約付き変分不等式問題に対処する手法として,制約付き勾配法(Constrained Gradient Method, CGM)を提案する。
提案アルゴリズムは, 単調・強単調両方の演算子問合せにおいて, プロジェクションに基づく手法の複雑さに適合する。
論文 参考訳(メタデータ) (2024-03-19T16:03:03Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - A Sequential Deep Learning Algorithm for Sampled Mixed-integer
Optimisation Problems [0.3867363075280544]
混合整数最適化問題に対する2つの効率的なアルゴリズムを導入,解析する。
両アルゴリズムが最適解に対して有限時間収束を示すことを示す。
3つの数値実験により,これらのアルゴリズムの有効性を定量的に確立する。
論文 参考訳(メタデータ) (2023-01-25T17:10:52Z) - A Sequential Quadratic Programming Method with High Probability Complexity Bounds for Nonlinear Equality Constrained Stochastic Optimization [2.3814052021083354]
制約関数値と導関数は利用可能であると仮定されるが、対象関数とその関連する導関数のプログラミング近似のみを計算することができる。
1次定常性を近似するためにアルゴリズムの反復複雑性に縛られる高い確率が導出される。
論文 参考訳(メタデータ) (2023-01-01T21:46:50Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Beyond Worst-Case Analysis in Stochastic Approximation: Moment
Estimation Improves Instance Complexity [58.70807593332932]
近似問題に対する勾配に基づく手法のオラクル複雑性について検討する。
最悪のケースの複雑さではなく、インスタンス依存の複雑さに焦点を当てます。
提案アルゴリズムとその解析はモーメント推定の成功を理論的に正当化する。
論文 参考訳(メタデータ) (2020-06-08T09:25:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。