論文の概要: Robust Context-Aware Object Recognition
- arxiv url: http://arxiv.org/abs/2510.00618v1
- Date: Wed, 01 Oct 2025 07:45:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.445727
- Title: Robust Context-Aware Object Recognition
- Title(参考訳): ロバストなコンテキスト認識オブジェクト認識
- Authors: Klara Janouskova, Cristian Gavrus, Jiri Matas,
- Abstract要約: RCORは、ローカライゼーションを認識の不可欠な部分として扱い、オブジェクト中心およびコンテキスト認識モデリングを分離する。
その結果、ImageNet-1kのような複雑なシーンでも、認識前のローカライゼーションが可能になった。
- 参考スコア(独自算出の注目度): 15.318646611581741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In visual recognition, both the object of interest (referred to as foreground, FG, for simplicity) and its surrounding context (background, BG) play an important role. However, standard supervised learning often leads to unintended over-reliance on the BG, known as shortcut learning of spurious correlations, limiting model robustness in real-world deployment settings. In the literature, the problem is mainly addressed by suppressing the BG, sacrificing context information for improved generalization. We propose RCOR -- Robust Context-Aware Object Recognition -- the first approach that jointly achieves robustness and context-awareness without compromising either. RCOR treats localization as an integral part of recognition to decouple object-centric and context-aware modelling, followed by a robust, non-parametric fusion. It improves the performance of both supervised models and VLM on datasets with both in-domain and out-of-domain BG, even without fine-tuning. The results confirm that localization before recognition is now possible even in complex scenes as in ImageNet-1k.
- Abstract(参考訳): 視覚認識においては、関心の対象(前景、FG、単純性)と周囲の文脈(背景、BG)の両方が重要な役割を果たす。
しかし、標準的な教師付き学習は、しばしばBGの意図しない過度信頼につながる。これは、スプリケートな相関関係のショートカット学習として知られ、現実世界の配置設定におけるモデルロバスト性を制限する。
文献では、主にBGを抑圧し、一般化を改善するためにコンテキスト情報を犠牲にする。
RCOR -- Robust Context-Aware Object Recognition -- は、どちらも妥協することなく、堅牢性とコンテキスト認識を両立させる最初のアプローチである。
RCORは、ローカライゼーションを認識の不可欠な部分として扱うことで、オブジェクト中心とコンテキスト認識のモデリングを分離し、続いてロバストで非パラメトリックな融合を行う。
微調整なしでも、ドメイン内とドメイン外の両方のBGを持つデータセット上での教師付きモデルとVLMの両方のパフォーマンスを改善する。
その結果,ImageNet-1kのような複雑なシーンでも,認識前のローカライゼーションが可能になった。
関連論文リスト
- Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception [71.26728044621458]
DeCLIPは、CLIPを強化する新しいフレームワークで、自己認識モジュールを分離して、それぞれコンテンツ’と“コンテキスト’の機能を取得する。
2D検出とセグメンテーション、3Dインスタンスのセグメンテーション、ビデオインスタンスのセグメンテーション、6Dオブジェクトのポーズ推定など、幅広いタスクにわたる最先端のパフォーマンスを一貫して達成する。
論文 参考訳(メタデータ) (2025-08-15T06:43:51Z) - Bringing the Context Back into Object Recognition, Robustly [21.917582794820095]
ローカライズ・トゥ・認識ロバストリー (L2R2) は文脈認識分類の利点を生かした新しい認識手法である。
教師付きトレーニングによる標準認識と、VLMによるマルチモーダルゼロショット認識の両方の性能を向上させる。
その結果、幅広いデータセットに対して認識前のローカライゼーションが可能であることを確認した。
論文 参考訳(メタデータ) (2024-11-24T17:39:39Z) - DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation [8.422110274212503]
弱教師付きセマンティックセグメンテーションアプローチは通常、初期シード生成にクラスアクティベーションマップ(CAM)に依存する。
DALNetは、テキストの埋め込みを利用して、さまざまなレベルの粒度のオブジェクトの包括的理解と正確な位置決めを強化する。
このアプローチは特に、シングルステージの手法として、より効率的なエンドツーエンドプロセスを可能にします。
論文 参考訳(メタデータ) (2024-09-24T06:51:49Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA) と呼ばれる新しいモデルに依存しないフレームワークを提案する。
CEFAは機能アライメントモジュールとコンテキスト拡張モジュールで構成される。
本手法は, 稀なカテゴリにおけるHOIモデルの検出性能を向上させるために, プラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T08:42:48Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural
Network [52.29330138835208]
画像のペア間の局所的な特徴の正確なマッチングは、コンピュータビジョンの課題である。
従来の研究では、注意に基づくグラフニューラルネットワーク(GNN)と、画像内のキーポイントに完全に接続されたグラフを使用するのが一般的だった。
本稿では,非繰り返しキーポイントをバイパスし,マッチング可能なキーポイントを利用してメッセージパッシングを誘導する,疎注意に基づくGNNアーキテクチャであるMaKeGNNを提案する。
論文 参考訳(メタデータ) (2023-07-04T02:50:44Z) - SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained
Image Categorization [24.286426387100423]
本稿では,最も関連性の高い画像領域からコンテキスト認識機能を集約することで,微妙な変化を捉える手法を提案する。
我々のアプローチは、近年の自己注意とグラフニューラルネットワーク(GNN)の発展にインスパイアされている。
これは、認識精度のかなりの差で最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-09-05T19:43:15Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
我々は、FGRR(Fearground-aware Graph-based Reasoning)というドメインDのための新しい汎用フレームワークを提案する。
FGRRはグラフ構造を検出パイプラインに組み込んで、ドメイン内およびドメイン間フォアグラウンドオブジェクト関係を明示的にモデル化する。
実験の結果、提案したFGRRは4つのDomainDベンチマークの最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-06-06T05:12:48Z) - Relation-aware Instance Refinement for Weakly Supervised Visual
Grounding [44.33411132188231]
visual groundingは、ビジュアルオブジェクトとその言語エンティティ間の対応を構築することを目的としている。
本稿では,オブジェクトの細粒化とエンティティ関係モデリングを組み込んだ,新しい弱教師付き学習手法を提案する。
2つの公開ベンチマークの実験は、我々のフレームワークの有効性を実証している。
論文 参考訳(メタデータ) (2021-03-24T05:03:54Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
弱教師付き画像ラベルを持つ対象クラスにおける局所化モデル学習の問題点について検討する。
本研究では,対象関数のみの学習は知識伝達の弱い形態であると主張する。
COCOおよびILSVRC 2013検出データセットの実験では、ペアワイズ類似度関数を含むことにより、ローカライズモデルの性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-03-18T17:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。