論文の概要: Eliciting Chain-of-Thought Reasoning for Time Series Analysis using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2510.01116v1
- Date: Wed, 01 Oct 2025 17:02:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.681985
- Title: Eliciting Chain-of-Thought Reasoning for Time Series Analysis using Reinforcement Learning
- Title(参考訳): 強化学習を用いた時系列解析のためのチェーン・オブ・ソート推論の回避
- Authors: Felix Parker, Nimeesha Chan, Chi Zhang, Kimia Ghobadi,
- Abstract要約: 複雑な数値時系列解析は、しばしば現在のモデルの範囲を超えて多段階の推論能力を必要とする。
我々は,大規模言語モデルを訓練して,多種多様な時系列タスクに対して,検証可能な報酬付き強化学習(RL)を用いた推論を行うための,最初のフレームワークであるCOUNTS(Chain Of thought for Understanding Numerical Time Series)を紹介した。
実験により、中間CoT推論を用いたこのRL駆動方式は、様々な時系列解析タスクにおけるLLM性能を大幅に向上させ、複雑な時間的データ推論の新たな可能性を開くことを実証した。
- 参考スコア(独自算出の注目度): 2.426309874608745
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Complex numerical time series analysis often demands multi-step reasoning capabilities beyond current models' reach. Tasks like medical diagnosis and weather forecasting require sequential reasoning processes -- including counterfactual analysis, logical deduction, knowledge application, and multi-modal contextual integration -- that existing time series models cannot explicitly perform. While recent research has shown large language models (LLMs) can achieve sophisticated Chain-of-Thought (CoT) reasoning through reinforcement learning (RL), these advances have primarily focused on mathematical and coding domains, with LLMs still demonstrating poor performance on time series tasks. We introduce Chain Of thought for Understanding Numerical Time Series (COUNTS), the first framework that trains LLMs to perform CoT reasoning across diverse time series tasks using RL with verifiable rewards. Our approach employs a Residual Vector-Quantized VAE to create high-fidelity discrete tokens that seamlessly integrate into a pre-trained LLM's vocabulary. COUNTS undergoes a two-stage training process: first, supervised fine-tuning on time series analysis tasks to master our novel representations, followed by Group Relative Policy Optimization training on verifiable problems using prompting strategies that encourage explicit reasoning steps before producing final answers. Our experiments demonstrate that this RL-driven approach with intermediate CoT reasoning significantly enhances LLM performance across various time series analysis tasks, opening new possibilities for complex temporal data reasoning.
- Abstract(参考訳): 複雑な数値時系列解析は、しばしば現在のモデルの範囲を超えて多段階の推論能力を必要とする。
医療診断や天気予報のようなタスクは、既存の時系列モデルが明示的に実行できないようなシーケンシャルな推論プロセス(反事実分析、論理的推論、知識応用、マルチモーダルな文脈統合など)を必要とする。
近年の研究では、強化学習(RL)による高度なChain-of-Thought(CoT)推論を大規模言語モデル(LLM)で実現できることが示されているが、これらの進歩は主に数学的およびコーディング領域に焦点を合わせており、LLMは時系列タスクにおけるパフォーマンスの低さを証明している。
計算時間列(COUNTS)を理解するためのチェイン・オブ・シンキング(Chain Of thought for Understanding Numerical Time Series, COUNTS)を導入する。
我々のアプローチでは、残留ベクトル量子化VAEを用いて、学習済みLLMの語彙にシームレスに統合された高忠実度離散トークンを作成する。
COUNTSは、まず、新しい表現をマスターするために時系列分析タスクを監督する微調整を行い、次に、グループ相対政策最適化(Group Relative Policy Optimization)は、最終回答を生成する前に明示的な推論ステップを奨励する戦略を推進し、検証可能な問題に関する訓練を行う。
実験により、中間CoT推論を用いたこのRL駆動方式は、様々な時系列解析タスクにおけるLLM性能を大幅に向上させ、複雑な時間的データ推論の新たな可能性を開くことを実証した。
関連論文リスト
- LLMs Meet Cross-Modal Time Series Analytics: Overview and Directions [25.234786025837423]
大規模言語モデル(LLM)は、時系列分析のための有望なパラダイムとして登場した。
本チュートリアルは,マルチモーダル時系列解析における実世界の問題解決におけるLLMの実践的応用の拡大を目的としている。
論文 参考訳(メタデータ) (2025-07-13T23:47:32Z) - Time Series Forecasting as Reasoning: A Slow-Thinking Approach with Reinforced LLMs [12.295608604703117]
Time-R1は、時系列予測のためのLLMの多段階推論能力を高めるために設計された2段階強化微調整フレームワークである。
具体的には、第1段はウォームアップ適応のための教師付き微調整を行い、第2段は強化学習を用いてモデルの一般化能力を向上させる。
実験によると、Time-R1は多様なデータセット間で予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2025-06-12T12:15:50Z) - Enhancing LLM Reasoning for Time Series Classification by Tailored Thinking and Fused Decision [8.256998757769322]
ReasonTSC は時系列分類のための LLM 推論を活用するために設計されたフレームワークである。
時系列データの本質的な特性について、モデルを熟考する。
これは、例えばドメイン固有の時系列モデルのようなプラグイン分類器からの予測と信頼スコアを、インコンテキストの例として統合する。
論文 参考訳(メタデータ) (2025-06-01T03:15:54Z) - Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXLはプロトタイプベースの時系列エンコーダを統合するマルチモーダル予測フレームワークである。
より正確な予測と解釈可能な説明を生成する。
4つの実世界のデータセットに対する実証的な評価は、TimeXLがAUCで最大8.9%の改善を達成していることを示している。
論文 参考訳(メタデータ) (2025-03-02T20:40:53Z) - Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
マルチモーダル言語モデル (MLLM) は時系列解析においてより強力で柔軟な推論を可能にすると論じる。
我々は、MLLMにおける信頼、解釈可能性、堅牢な推論を優先する戦略を開発することで、この可能性を活用するよう研究者や実践者に呼びかける。
論文 参考訳(メタデータ) (2025-02-03T16:10:48Z) - Domain-Oriented Time Series Inference Agents for Reasoning and Automated Analysis [19.649769354503658]
本稿では,自然言語推論と正確な数値実行を統合したドメイン指向時系列エージェントTS-Reasonerを紹介する。
基本時系列理解と複雑な多段階推論という2つの軸でその能力を評価する。
論文 参考訳(メタデータ) (2024-10-05T06:04:19Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
MTSFのためのクロスモーダルLCMファインチューニング(CALF)フレームワークを提案する。
分散の相違を低減するため,クロスモーダルマッチングモジュールを開発した。
CALFは、長期および短期の予測タスクの最先端のパフォーマンスを確立する。
論文 参考訳(メタデータ) (2024-03-12T04:04:38Z) - Empowering Time Series Analysis with Large Language Models: A Survey [24.202539098675953]
本稿では,大規模言語モデルを用いた時系列解析手法の体系的概要について述べる。
具体的には、まず、時系列の文脈で言語モデルを適用する際の課題とモチベーションについて述べる。
次に、既存のメソッドを異なるグループ(ダイレクトクエリ、トークン化、プロンプトデザイン、ファインチューン、モデル統合)に分類し、各グループにおける主要なアイデアを強調します。
論文 参考訳(メタデータ) (2024-02-05T16:46:35Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
現在の大規模言語モデル(LLM)は時系列解析に革命をもたらす可能性があると我々は主張する。
このような進歩は、時系列のモダリティスイッチングや質問応答など、幅広い可能性を解き放つ可能性がある。
論文 参考訳(メタデータ) (2024-02-05T04:17:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。