論文の概要: A cybersecurity AI agent selection and decision support framework
- arxiv url: http://arxiv.org/abs/2510.01751v1
- Date: Thu, 02 Oct 2025 07:38:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:21.041634
- Title: A cybersecurity AI agent selection and decision support framework
- Title(参考訳): サイバーセキュリティAIエージェントの選択と意思決定支援フレームワーク
- Authors: Masike Malatji,
- Abstract要約: 本稿では,AIエージェントアーキテクチャ,リアクティブ,認知,ハイブリッド,学習を協調する,新しい構造化された意思決定支援フレームワークを提案する。
エージェント理論と産業ガイドラインを統合することで、このフレームワークは、AIソリューションの選択とデプロイのための透過的で段階的な方法論を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel, structured decision support framework that systematically aligns diverse artificial intelligence (AI) agent architectures, reactive, cognitive, hybrid, and learning, with the comprehensive National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF) 2.0. By integrating agent theory with industry guidelines, this framework provides a transparent and stepwise methodology for selecting and deploying AI solutions to address contemporary cyber threats. Employing a granular decomposition of NIST CSF 2.0 functions into specific tasks, the study links essential AI agent properties such as autonomy, adaptive learning, and real-time responsiveness to each subcategory's security requirements. In addition, it outlines graduated levels of autonomy (assisted, augmented, and fully autonomous) to accommodate organisations at varying stages of cybersecurity maturity. This holistic approach transcends isolated AI applications, providing a unified detection, incident response, and governance strategy. Through conceptual validation, the framework demonstrates how tailored AI agent deployments can align with real-world constraints and risk profiles, enhancing situational awareness, accelerating response times, and fortifying long-term resilience via adaptive risk management. Ultimately, this research bridges the gap between theoretical AI constructs and operational cybersecurity demands, establishing a foundation for robust, empirically validated multi-agent systems that adhere to industry standards.
- Abstract(参考訳): 本稿では,多種多様な人工知能(AI)エージェントアーキテクチャ,リアクティブ,認知,ハイブリッド,学習を包括的標準技術研究所(NIST)サイバーセキュリティフレームワーク(CSF)2.0に体系的に整合させる,新しい構造化された意思決定支援フレームワークを提案する。
エージェント理論と業界ガイドラインを統合することで、このフレームワークは、現代のサイバー脅威に対処するためのAIソリューションの選択とデプロイを透過的かつ段階的に行う方法論を提供する。
NIST CSF 2.0の粒度の分解を特定のタスクに当てはめ、各サブカテゴリのセキュリティ要件に対する自律性、適応学習、リアルタイム応答性といった重要なAIエージェント特性をリンクする。
さらに、サイバーセキュリティの成熟度の異なる段階の組織に対応するために、上級レベルの自律性(支援、強化、完全自律性)を概説している。
この全体論的アプローチは、分離されたAIアプリケーションを超越し、統一された検出、インシデント対応、ガバナンス戦略を提供する。
概念的検証を通じて、このフレームワークは、調整されたAIエージェントのデプロイメントが、現実の制約やリスクプロファイルとどのように整合し、状況認識を高め、応答時間を短縮し、適応的なリスク管理を通じて長期的なレジリエンスを強化するかを実証する。
最終的にこの研究は、理論的なAI構造と運用上のサイバーセキュリティ要求のギャップを埋め、業界標準に準拠した堅牢で実証的なマルチエージェントシステムの基盤を確立する。
関連論文リスト
- Adaptive Cybersecurity Architecture for Digital Product Ecosystems Using Agentic AI [0.0]
本研究では,動的学習と文脈認識型意思決定が可能な自律目標駆動エージェントを提案する。
行動ベースライン、分散リスクスコア、フェデレーションされた脅威情報共有は重要な特徴である。
このアーキテクチャは、複雑なデジタルインフラストラクチャを保護するインテリジェントでスケーラブルな青写真を提供する。
論文 参考訳(メタデータ) (2025-09-25T00:43:53Z) - Never Compromise to Vulnerabilities: A Comprehensive Survey on AI Governance [211.5823259429128]
本研究は,本質的セキュリティ,デリバティブ・セキュリティ,社会倫理の3つの柱を中心に構築された,技術的・社会的次元を統合した包括的枠組みを提案する。
我々は,(1)防衛が進化する脅威に対して失敗する一般化ギャップ,(2)現実世界のリスクを無視する不適切な評価プロトコル,(3)矛盾する監視につながる断片的な規制,の3つの課題を特定する。
私たちのフレームワークは、研究者、エンジニア、政策立案者に対して、堅牢でセキュアなだけでなく、倫理的に整合性があり、公的な信頼に値するAIシステムを開発するための実用的なガイダンスを提供します。
論文 参考訳(メタデータ) (2025-08-12T09:42:56Z) - A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems [53.37728204835912]
既存のAIシステムは、デプロイ後も静的な手作業による構成に依存している。
近年,インタラクションデータと環境フィードバックに基づいてエージェントシステムを自動拡張するエージェント進化手法が研究されている。
この調査は、自己進化型AIエージェントの体系的な理解を研究者や実践者に提供することを目的としている。
論文 参考訳(メタデータ) (2025-08-10T16:07:32Z) - Web3 x AI Agents: Landscape, Integrations, and Foundational Challenges [49.69200207497795]
Web3テクノロジとAIエージェントの収束は、分散化されたエコシステムを再形成する、急速に進化するフロンティアを表している。
本稿では, ランドスケープ, 経済, ガバナンス, セキュリティ, 信頼メカニズムの5つの重要な側面について, Web3 と AI エージェントの交わりについて, 初めてかつ最も包括的な分析を行った。
論文 参考訳(メタデータ) (2025-08-04T15:44:58Z) - TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems [8.683314804719506]
本稿では,エージェントマルチエージェントシステム(AMAS)における信頼・リスク・セキュリティマネジメント(TRiSM)の構造的分析について述べる。
まず、エージェントAIの概念的基礎を調べ、従来のAIエージェントとアーキテクチャ的区別を強調します。
次に、Textit Explainability、ModelOps、Security、Privacy、Textittheirのガバナンスガバナンスといった重要な柱を中心に構築された、エージェントAIのためのAI TRiSMフレームワークを適応して拡張します。
調整失敗から調整失敗まで、エージェントAIのユニークな脅威と脆弱性を捉えるためにリスク分類法が提案されている。
論文 参考訳(メタデータ) (2025-06-04T16:26:11Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。