論文の概要: Calibrating the Full Predictive Class Distribution of 3D Object Detectors for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2510.01829v1
- Date: Thu, 02 Oct 2025 09:22:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:21.07158
- Title: Calibrating the Full Predictive Class Distribution of 3D Object Detectors for Autonomous Driving
- Title(参考訳): 自律運転のための3次元物体検出器の完全な予測クラス分布の校正
- Authors: Cornelius Schröder, Marius-Raphael Schlüter, Markus Lienkamp,
- Abstract要約: 全クラスにわたる完全な予測信頼分布のキャリブレーションを考慮する必要があると論じる。
本稿では,主予測の校正と完全予測ベクトルをトレーニング目標とする2つの補助正則化損失項を提案する。
- 参考スコア(独自算出の注目度): 8.046180274721541
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In autonomous systems, precise object detection and uncertainty estimation are critical for self-aware and safe operation. This work addresses confidence calibration for the classification task of 3D object detectors. We argue that it is necessary to regard the calibration of the full predictive confidence distribution over all classes and deduce a metric which captures the calibration of dominant and secondary class predictions. We propose two auxiliary regularizing loss terms which introduce either calibration of the dominant prediction or the full prediction vector as a training goal. We evaluate a range of post-hoc and train-time methods for CenterPoint, PillarNet and DSVT-Pillar and find that combining our loss term, which regularizes for calibration of the full class prediction, and isotonic regression lead to the best calibration of CenterPoint and PillarNet with respect to both dominant and secondary class predictions. We further find that DSVT-Pillar can not be jointly calibrated for dominant and secondary predictions using the same method.
- Abstract(参考訳): 自律システムでは、正確な物体検出と不確実性推定が自己認識と安全な操作に不可欠である。
本研究は3次元物体検出器の分類タスクに対する信頼性校正に対処する。
本論では,全てのクラスにおける完全信頼度分布のキャリブレーションを考慮し,支配的・中等クラスの予測のキャリブレーションを捉える指標を導出する必要があると論じる。
本稿では,主予測の校正と完全予測ベクトルをトレーニング目標とする2つの補助正則化損失項を提案する。
本研究では,CenterPoint,PillarNet,DSVT-Pillarのポストホックおよびトレインタイムの手法について評価し,全クラス予測の校正を正規化するための損失項と等調回帰を組み合わせ,CenterPointとPillarNetの校正を優良クラス予測と二次クラス予測の両方に関して最適に行うことを発見した。
さらに、DSVT-Pillarは、同じ手法を用いて、支配的および二次的な予測に対して共同で校正できないことが判明した。
関連論文リスト
- Rethinking Early Stopping: Refine, Then Calibrate [49.966899634962374]
キャリブレーション・リファインメント分解の新規な変分定式化について述べる。
我々は,校正誤差と精錬誤差が訓練中に同時に最小化されないという理論的,実証的な証拠を提供する。
論文 参考訳(メタデータ) (2025-01-31T15:03:54Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Optimizing Calibration by Gaining Aware of Prediction Correctness [30.619608580138802]
クロスエントロピー(CE)損失はキャリブレータトレーニングに広く使われており、基底真理クラスに対する信頼を高めるためにモデルを強制する。
本稿では, キャリブレーションの目的から得られた, ポストホックキャリブレーションの新たなキャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T17:25:43Z) - Domain-adaptive and Subgroup-specific Cascaded Temperature Regression
for Out-of-distribution Calibration [16.930766717110053]
本稿では, メタセットをベースとした新しい温度回帰法を提案し, ポストホックキャリブレーション法を提案する。
予測されたカテゴリと信頼度に基づいて,各メタセットをサブグループに分割し,多様な不確実性を捉える。
回帰ネットワークは、カテゴリ特化および信頼レベル特化スケーリングを導出し、メタセット間のキャリブレーションを達成するように訓練される。
論文 参考訳(メタデータ) (2024-02-14T14:35:57Z) - Calibrated Uncertainty Quantification for Operator Learning via
Conformal Prediction [95.75771195913046]
本稿では, リスク制御型量子ニューラル演算子, 分布のない有限サンプル機能キャリブレーション等式予測法を提案する。
関数領域上の点の期待値として定義されるカバレッジ率に関する理論的キャリブレーションを保証する。
2次元ダーシー流と3次元自動車表面圧力予測タスクに関する実験結果から,我々の理論的結果が検証された。
論文 参考訳(メタデータ) (2024-02-02T23:43:28Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - On the Calibration of Uncertainty Estimation in LiDAR-based Semantic
Segmentation [7.100396757261104]
本稿では,個々のクラスに対するセグメンテーションモデルの信頼性校正品質を測定する指標を提案する。
また,手書きまたは自動注釈付きデータセットの品質向上のためにラベル問題を自動的に検出する手法の二重利用を提案する。
論文 参考訳(メタデータ) (2023-08-04T10:59:24Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。