論文の概要: KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2510.02084v2
- Date: Fri, 03 Oct 2025 05:10:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 14:21:29.928488
- Title: KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
- Title(参考訳): KAIROS:Universal Non-Autogressive Time Series Forecastingのための統一トレーニング
- Authors: Kuiye Ding, Fanda Fan, Zheya Wang, Hongxiao Li, Yifan Wang, Lei Wang, Chunjie Luo, Jianfeng Zhan,
- Abstract要約: KAIROSは非自己回帰時系列予測フレームワークである。
自動回帰アプローチとは異なり、KAIROSはエラーの蓄積を回避し、ジャスト・イン・タイム推論を実現する。
- 参考スコア(独自算出の注目度): 6.312575071507716
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
- Abstract(参考訳): World Wide Webでは、信頼性のある時系列予測が、リソース計画、キャッシュ配置、異常応答を駆動する前方的な信号を提供し、プラットフォームがユーザの振る舞いやコンテンツの分布が進化するにつれて効率的に動作できるようにする。
他のドメインと比較して、Webアプリケーションの時系列予測は、リアルタイム意思決定をサポートするためにはるかに高速な応答性を必要とします。
我々は,セグメントレベルのマルチピーク分布を直接モデル化する非自己回帰時系列予測フレームワークKAIROSを提案する。
自己回帰アプローチとは異なり、KAIROSはエラーの蓄積を回避し、ジャスト・イン・タイムの推論を実現すると同時に、過度に滑らかな予測に崩壊する既存の非自己回帰モデルを改善する。
大規模なコーパスでトレーニングされたKAIROSは、広く使用されている6つのベンチマークに対して強力なゼロショットの一般化を示し、推論コストのごく一部で、同様のスケールの最先端の基礎モデルに匹敵する予測性能を提供する。
経験的な結果以外にも、KAIROSは、時系列における基礎モデルのためのスケーラブルなパラダイムとして、非自己回帰設計の重要性を強調している。
関連論文リスト
- VARMA-Enhanced Transformer for Time Series Forecasting [4.982130518684668]
VARMAformerは、古典的な時系列分析の原理で、クロスアテンションのみのフレームワークの効率を相乗化する新しいアーキテクチャである。
これらの古典的な洞察を現代のバックボーンに融合させることで、VARMAformerはグローバル、長距離の依存関係と局所的な統計構造の両方をキャプチャする。
論文 参考訳(メタデータ) (2025-09-05T03:32:51Z) - Enhancing Transformer-Based Foundation Models for Time Series Forecasting via Bagging, Boosting and Statistical Ensembles [7.787518725874443]
時系列基礎モデル(TSFM)は、時系列予測、異常検出、分類、計算のための強力な一般化とゼロショット能力を示している。
本稿では, 統計的およびアンサンブルに基づくエンハンスメント技術を用いて, 頑健さと精度を向上させる手法について検討する。
論文 参考訳(メタデータ) (2025-08-18T04:06:26Z) - Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
Eucidated Rolling Diffusion Models (ERDM)を紹介する。
ERDMはEucidated Diffusion Models (EDM) の原理的, 性能的設計とローリング予測構造を統一する最初のフレームワークである
2D Navier-StokesシミュレーションとERA5グローバル気象予報の1.5円解像度では、ERDMはキー拡散ベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2025-06-24T21:44:31Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Conditional Denoising Meets Polynomial Modeling: A Flexible Decoupled Framework for Time Series Forecasting [5.770377200028654]
本稿では,複雑な時間パターンをモデル化するための条件記述型多項式モデリング(CDPM)フレームワークを提案する。
結合した時系列をモデル化する代わりに、CDPMはそれを傾向と季節的な要素に分解し、個別にモデル化する。
スムーズなトレンドコンポーネントに対しては、歴史的依存関係を組み込んで線形モデルを強化するモジュールが提案されている。
論文 参考訳(メタデータ) (2024-10-17T06:20:43Z) - Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift [51.01356105618118]
時系列はしばしば、季節、動作条件、意味的な意味など、セグメントごとに異なるパターンを持つ複雑な非一様分布を示す。
既存のアプローチでは、通常、これらのさまざまなパターンをキャプチャするために単一のモデルをトレーニングするが、しばしばパッチ間のパターンのドリフトに苦労する。
より正確で適応可能な時系列予測にパターン特化の専門家を活用する新しいアーキテクチャであるTFPSを提案する。
論文 参考訳(メタデータ) (2024-10-13T13:35:29Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
本稿では,時系列予測における対実生成の新たな問題を定式化し,ForecastCFと呼ばれるアルゴリズムを提案する。
ForecastCFは、勾配に基づく摂動を元の時系列に適用することで、この問題を解決する。
以上の結果から,ForecastCFは,逆ファクト的妥当性とデータ多様体の近接性の観点から,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-10-12T08:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。