論文の概要: Tradeoffs on the volume of fault-tolerant circuits
- arxiv url: http://arxiv.org/abs/2510.03057v1
- Date: Fri, 03 Oct 2025 14:39:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 16:35:52.429509
- Title: Tradeoffs on the volume of fault-tolerant circuits
- Title(参考訳): 耐故障回路の体積に関するトレードオフ
- Authors: Anirudh Krishna, Gilles Zémor,
- Abstract要約: 誤り訂正符号は欠陥のある回路部品を克服し、堅牢な計算を可能にする。
適切なコードを選択することは、いくつかの要件のバランスを取る必要があるため、簡単ではない。
コードファミリは、エンコードされたCNOTゲートを実行するための、一定レート、距離の増大、および短距離ガジェットを同時に持つことはできない。
- 参考スコア(独自算出の注目度): 8.594140167290096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dating back to the seminal work of von Neumann [von Neumann, Automata Studies, 1956], it is known that error correcting codes can overcome faulty circuit components to enable robust computation. Choosing an appropriate code is non-trivial as it must balance several requirements. Increasing the rate of the code reduces the relative number of redundant bits used in the fault-tolerant circuit, while increasing the distance of the code ensures robustness against faults. If the rate and distance were the only concerns, we could use asymptotically optimal codes as is done in communication settings. However, choosing a code for computation is challenging due to an additional requirement: The code needs to facilitate accessibility of encoded information to enable computation on encoded data. This seems to conflict with having large rate and distance. We prove that this is indeed the case, namely that a code family cannot simultaneously have constant rate, growing distance and short-depth gadgets to perform encoded CNOT gates. As a consequence, achieving good rate and distance may necessarily entail accepting very deep circuits, an undesirable trade-off in certain architectures and applications.
- Abstract(参考訳): フォン・ノイマン(von Neumann, Automata Studies, 1956)の研究に遡ると、誤り訂正符号が不良回路成分を克服し、堅牢な計算を可能にすることが知られている。
適切なコードを選択することは、いくつかの要件のバランスを取る必要があるため、簡単ではない。
コードレートの増大は、フォールトトレラント回路で使用される冗長ビットの相対的な数を減らすと同時に、コード距離を増大させることで、フォールトに対して堅牢性を確保する。
レートと距離が唯一の関心事であれば、通信設定のように漸近的に最適なコードを使うことができます。
コードは、エンコードされたデータの計算を可能にするために、エンコードされた情報のアクセシビリティを容易にしなければなりません。
これは大きな速度と距離を持つことと矛盾しているようだ。
コードファミリが一定レート、距離の増大、CNOTゲートの符号化を行うための短いガジェットを同時に持つことができないことが証明されている。
結果として、高いレートと距離を達成するには、必ずしも非常に深い回路を受け入れる必要があり、それは特定のアーキテクチャやアプリケーションにおいて望ましくないトレードオフである。
関連論文リスト
- Fast correlated decoding of transversal logical algorithms [67.01652927671279]
大規模計算には量子エラー補正(QEC)が必要であるが、かなりのリソースオーバーヘッドが発生する。
近年の進歩により、論理ゲートからなるアルゴリズムにおいて論理キュービットを共同で復号化することにより、症候群抽出ラウンドの数を削減できることが示されている。
ここでは、回路を介して伝播する関連する論理演算子製品を直接復号することで、回路の復号化の問題を修正する。
論文 参考訳(メタデータ) (2025-05-19T18:00:00Z) - Generalizing the matching decoder for the Chamon code [1.8416014644193066]
チャモン符号として知られる3次元,非CSS,低密度のパリティチェックコードに対して,マッチングデコーダのバリエーションを実装した。
一般化された整合デコーダは、整合前に信念伝播ステップによって拡張され、ノイズの偏極に対するしきい値が10.5%となる。
論文 参考訳(メタデータ) (2024-11-05T19:00:12Z) - Low-Overhead Transversal Fault Tolerance for Universal Quantum Computation [36.3664581543528]
論理演算は一定回数の抽出ラウンドしか持たず、フォールトトレラントに実行可能であることを示す。
我々の研究は、量子フォールトトレランスの理論に新たな光を当て、実用的なフォールトトレラント量子計算の時空コストを1桁以上削減する可能性を持っている。
論文 参考訳(メタデータ) (2024-06-25T15:43:25Z) - Progressive-Proximity Bit-Flipping for Decoding Surface Codes [8.971989179518214]
トリックやサーフェスコードのようなトポロジカル量子コードは、ハードウェア実装の優れた候補である。
既存のデコーダは、計算複雑性の低いような要求を満たすのに不足することが多い。
トリックおよび表面符号に適した新しいビットフリップ(BF)デコーダを提案する。
論文 参考訳(メタデータ) (2024-02-24T22:38:05Z) - Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes [0.24578723416255752]
低深さランダム回路符号は、量子誤り訂正に望ましい多くの特性を有する。
1次元ランダム回路符号の符号化状態を作成するための耐故障性蒸留プロトコルを設計する。
数値シミュレーションにより,提案プロトコルはエラー率を最大2%の誤差率で補正できることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:00:00Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
リアルタイム量子計算は、ノイズの多い量子ハードウェアによって生成されたデータのストリームから論理的な結果を取り出すことができる復号アルゴリズムを必要とする。
本稿では,デコーディングの精度を犠牲にすることなく,最小限の追加通信でこの問題に対処できるモジュールデコーディングを提案する。
本稿では,格子探索型耐故障ブロックのモジュールデコーディングの具体例であるエッジ頂点分解について紹介する。
論文 参考訳(メタデータ) (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
本稿では,量子チャネルに対するフォールトトレラントチャネル符号化の研究について述べる。
我々は、フォールトトレラント量子コンピューティングの手法を用いて、このシナリオで古典的および量子的情報を送信するための符号化定理を確立する。
特に,ゲートエラーがゼロに近づくと,耐故障能力が通常のキャパシティに近づくことを示す。
論文 参考訳(メタデータ) (2022-10-06T14:09:16Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。