論文の概要: Test-Time Defense Against Adversarial Attacks via Stochastic Resonance of Latent Ensembles
- arxiv url: http://arxiv.org/abs/2510.03224v1
- Date: Fri, 03 Oct 2025 17:57:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 16:35:52.533739
- Title: Test-Time Defense Against Adversarial Attacks via Stochastic Resonance of Latent Ensembles
- Title(参考訳): 遅延アンサンブルの確率共振による敵攻撃に対する試験時間防御
- Authors: Dong Lao, Yuxiang Zhang, Haniyeh Ehsani Oskouie, Yangchao Wu, Alex Wong, Stefano Soatto,
- Abstract要約: 敵攻撃に対するテスト時間防御機構を提案する。
モデルの予測を著しく変える、知覚できないイメージの摂動。
本研究では,画像分類における精度損失の68.1%,ステレオマッチングでは71.9%,光学フローでは29.2%まで回復することを示した。
- 参考スコア(独自算出の注目度): 42.57676672281981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a test-time defense mechanism against adversarial attacks: imperceptible image perturbations that significantly alter the predictions of a model. Unlike existing methods that rely on feature filtering or smoothing, which can lead to information loss, we propose to "combat noise with noise" by leveraging stochastic resonance to enhance robustness while minimizing information loss. Our approach introduces small translational perturbations to the input image, aligns the transformed feature embeddings, and aggregates them before mapping back to the original reference image. This can be expressed in a closed-form formula, which can be deployed on diverse existing network architectures without introducing additional network modules or fine-tuning for specific attack types. The resulting method is entirely training-free, architecture-agnostic, and attack-agnostic. Empirical results show state-of-the-art robustness on image classification and, for the first time, establish a generic test-time defense for dense prediction tasks, including stereo matching and optical flow, highlighting the method's versatility and practicality. Specifically, relative to clean (unperturbed) performance, our method recovers up to 68.1% of the accuracy loss on image classification, 71.9% on stereo matching, and 29.2% on optical flow under various types of adversarial attacks.
- Abstract(参考訳): 本稿では,敵攻撃に対するテスト時防御機構を提案する。
特徴フィルタリングやスムース化に頼って情報損失につながる既存の手法とは異なり,確率共鳴を利用して情報損失を最小限に抑えながら頑健性を高めることで「ノイズとノイズを結合する」ことを提案する。
提案手法では、入力画像に小さな変換摂動を導入し、変換された特徴埋め込みを整列させ、元の参照画像にマッピングする前にそれらを集約する。
これはクローズドフォームの公式で表現することができ、ネットワークモジュールの追加や特定の攻撃タイプを微調整することなく、様々な既存のネットワークアーキテクチャにデプロイすることができる。
結果として得られる方法は、完全にトレーニング不要、アーキテクチャ非依存、アタック非依存である。
実験により,画像分類における最先端のロバスト性を示し,ステレオマッチングや光フローを含む高密度予測タスクに対する総合的なテストタイムディフェンスを初めて確立し,手法の汎用性と実用性を強調した。
具体的には,画像分類における精度損失の68.1%,ステレオマッチングでは71.9%,光学フローでは29.2%まで回復した。
関連論文リスト
- Active Adversarial Noise Suppression for Image Forgery Localization [56.98050814363447]
本稿では、敵騒音の攻撃効果を抑制するために、防御的摂動を発生させる敵騒音抑制モジュール(ANSM)を提案する。
我々の知る限りでは、画像フォージェリローカライゼーションタスクにおける敵対的防御の報告としてはこれが初めてである。
論文 参考訳(メタデータ) (2025-06-15T14:53:27Z) - Anomaly Unveiled: Securing Image Classification against Adversarial
Patch Attacks [3.6275442368775512]
敵対的パッチ攻撃は、ディープラーニングシステムの実践的な展開に重大な脅威をもたらす。
本稿では,画像情報の分布における逆パッチの異常としての挙動について検討する。
提案する防御機構は,DBSCANと呼ばれるクラスタリング技術を用いて,異常な画像セグメントを分離する。
論文 参考訳(メタデータ) (2024-02-09T08:52:47Z) - Adversarial Purification of Information Masking [8.253834429336656]
アドリアックは、ニューラルネットワークを騙すイメージに対して、極小で知覚不能な摂動を発生させる。
これらに対抗して、敵の入力サンプルをクリーンな出力画像に変換し、敵の攻撃を防ごうとする。
本稿では,情報マスク浄化 (IMPure) と呼ばれる新しい対向的浄化手法を提案し,対向的摂動を広範囲に排除する。
論文 参考訳(メタデータ) (2023-11-26T15:50:19Z) - IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks [16.577595936609665]
本稿では,画像再サンプリングという,敵対的攻撃に対する新たなアプローチを提案する。
画像再サンプリングは、幾何学的変換によって指定されたシーンの再調整や再レンダリングの過程をシミュレートして、離散画像を新しい画像に変換する。
本手法は,クリーンな画像の精度を維持しつつ,多様な深層モデルの様々な攻撃に対する対角的堅牢性を著しく向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T11:19:32Z) - Improving Adversarial Robustness of Masked Autoencoders via Test-time
Frequency-domain Prompting [133.55037976429088]
BERTプリトレーニング(BEiT, MAE)を備えた視覚変換器の対向ロバスト性について検討する。
意外な観察は、MAEが他のBERT事前訓練法よりも敵の頑健さが著しく悪いことである。
我々は,MAEの対角的堅牢性を高めるための,シンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-08-20T16:27:17Z) - Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness [1.2289361708127877]
CARSOは、防御のために考案された適応的なエンドツーエンドのホワイトボックス攻撃から自身を守ることができる。
提案手法は,Cifar-10,Cifar-100,TinyImageNet-200の最先端技術により改善されている。
論文 参考訳(メタデータ) (2023-05-25T09:04:31Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - Detecting Patch Adversarial Attacks with Image Residuals [9.169947558498535]
識別器は、クリーンサンプルと逆サンプルを区別するために訓練される。
得られた残基が敵攻撃のデジタル指紋として機能することを示す。
その結果,提案手法は従来見つからなかった,より強力な攻撃に対して一般化可能であることがわかった。
論文 参考訳(メタデータ) (2020-02-28T01:28:22Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。