論文の概要: MIXER: Mixed Hyperspherical Random Embedding Neural Network for Texture Recognition
- arxiv url: http://arxiv.org/abs/2510.03228v1
- Date: Fri, 03 Oct 2025 17:58:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 16:35:52.538414
- Title: MIXER: Mixed Hyperspherical Random Embedding Neural Network for Texture Recognition
- Title(参考訳): MIXER:混成超球面ランダム埋め込みニューラルネットワークによるテクスチャ認識
- Authors: Ricardo T. Fares, Lucas C. Ribas,
- Abstract要約: テクスチャ表現学習のための新しいランダム化ニューラルネットワークであるMixerを提案する。
その中核となるのは、超球面ランダム埋め込みと二重分岐学習モジュールを利用して、チャネル内およびチャネル間関係を捉えることである。
実験結果から, 純テクスチャベンチマークにおける提案手法の興味深い結果が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Randomized neural networks for representation learning have consistently achieved prominent results in texture recognition tasks, effectively combining the advantages of both traditional techniques and learning-based approaches. However, existing approaches have so far focused mainly on improving cross-information prediction, without introducing significant advancements to the overall randomized network architecture. In this paper, we propose Mixer, a novel randomized neural network for texture representation learning. At its core, the method leverages hyperspherical random embeddings coupled with a dual-branch learning module to capture both intra- and inter-channel relationships, further enhanced by a newly formulated optimization problem for building rich texture representations. Experimental results have shown the interesting results of the proposed approach across several pure texture benchmarks, each with distinct characteristics and challenges. The source code will be available upon publication.
- Abstract(参考訳): 表現学習のためのランダム化されたニューラルネットワークは、テクスチャ認識タスクにおいて一貫して顕著な結果を達成しており、従来の技術と学習ベースのアプローチの利点を効果的に組み合わせている。
しかし、既存のアプローチは、全体的なランダム化ネットワークアーキテクチャに大きな進歩をもたらすことなく、情報横断予測の改善に重点を置いている。
本稿では,テクスチャ表現学習のための新しいランダム化ニューラルネットワークであるMixerを提案する。
その中核となるのは、二重分岐学習モジュールと結合した超球面ランダム埋め込みを利用して、チャネル内およびチャネル間関係を捕捉し、よりリッチなテクスチャ表現を構築するための新たな最適化問題によってさらに強化されることである。
実験結果から、提案手法がいくつかの純粋なテクスチャベンチマークにまたがって、それぞれ異なる特徴と課題を持つ興味深い結果が得られた。
ソースコードは公開時に公開される。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Generative Neural Fields by Mixtures of Neural Implicit Functions [43.27461391283186]
本稿では,暗黙的ベースネットワークの線形結合によって表現される生成的ニューラルネットワークを学習するための新しいアプローチを提案する。
提案アルゴリズムは,メタラーニングや自動デコーディングのパラダイムを採用することにより,暗黙のニューラルネットワーク表現とその係数を潜在空間で学習する。
論文 参考訳(メタデータ) (2023-10-30T11:41:41Z) - Deep Dependency Networks for Multi-Label Classification [24.24496964886951]
マルコフ確率場とニューラルネットワークを組み合わせた従来の手法の性能は、わずかに改善できることを示す。
我々は、依存性ネットワークを拡張するディープ依存ネットワークと呼ばれる新しいモデリングフレームワークを提案する。
単純さにもかかわらず、この新しいアーキテクチャを共同学習することで、パフォーマンスが大幅に向上する。
論文 参考訳(メタデータ) (2023-02-01T17:52:40Z) - MixupE: Understanding and Improving Mixup from Directional Derivative
Perspective [86.06981860668424]
理論上は、バニラ・ミックスアップよりも優れた一般化性能を実現するために、Mixupの改良版を提案する。
提案手法は,様々なアーキテクチャを用いて,複数のデータセットにまたがるMixupを改善した。
論文 参考訳(メタデータ) (2022-12-27T07:03:52Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning Local Complex Features using Randomized Neural Networks for
Texture Analysis [0.1474723404975345]
テクスチャ解析のための学習手法と複雑ネットワーク(CN)理論を組み合わせた新しい手法を提案する。
この方法はCNの表現能力を利用してテクスチャイメージを有向ネットワークとしてモデル化する。
このニューラルネットワークは、単一の隠蔽層を持ち、高速学習アルゴリズムを使用して、テクスチャのキャラクタリゼーションのためにローカルなCNパターンを学習することができる。
論文 参考訳(メタデータ) (2020-07-10T23:18:01Z) - Deep Randomized Neural Networks [12.333836441649343]
ランダム化されたニューラルネットワークは、ほとんどの接続が固定されたニューラルネットワークの挙動を探索する。
本章はランダム化ニューラルネットワークの設計と解析に関する主要な側面をすべて調査する。
論文 参考訳(メタデータ) (2020-02-27T17:57:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。