論文の概要: Diffusion-Classifier Synergy: Reward-Aligned Learning via Mutual Boosting Loop for FSCIL
- arxiv url: http://arxiv.org/abs/2510.03608v1
- Date: Sat, 04 Oct 2025 01:48:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.149622
- Title: Diffusion-Classifier Synergy: Reward-Aligned Learning via Mutual Boosting Loop for FSCIL
- Title(参考訳): Diffusion-Classifier Synergy:FSCILのための相互ブースティングループによる逆適応学習
- Authors: Ruitao Wu, Yifan Zhao, Guangyao Chen, Jia Li,
- Abstract要約: FSCIL(Few-Shot Class-Incremental Learning)は、最小限の例から新しいクラスを逐次学習するモデルに挑戦する。
現在のFSCIL法は、限られたデータセットに依存するため、一般化に苦慮することが多い。
本稿では拡散モデルとFSCIL分類器の相互強化ループを確立する新しいフレームワークであるDiffusion-Classifier Synergy(DCS)を紹介する。
- 参考スコア(独自算出の注目度): 19.094835780362775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-Shot Class-Incremental Learning (FSCIL) challenges models to sequentially learn new classes from minimal examples without forgetting prior knowledge, a task complicated by the stability-plasticity dilemma and data scarcity. Current FSCIL methods often struggle with generalization due to their reliance on limited datasets. While diffusion models offer a path for data augmentation, their direct application can lead to semantic misalignment or ineffective guidance. This paper introduces Diffusion-Classifier Synergy (DCS), a novel framework that establishes a mutual boosting loop between diffusion model and FSCIL classifier. DCS utilizes a reward-aligned learning strategy, where a dynamic, multi-faceted reward function derived from the classifier's state directs the diffusion model. This reward system operates at two levels: the feature level ensures semantic coherence and diversity using prototype-anchored maximum mean discrepancy and dimension-wise variance matching, while the logits level promotes exploratory image generation and enhances inter-class discriminability through confidence recalibration and cross-session confusion-aware mechanisms. This co-evolutionary process, where generated images refine the classifier and an improved classifier state yields better reward signals, demonstrably achieves state-of-the-art performance on FSCIL benchmarks, significantly enhancing both knowledge retention and new class learning.
- Abstract(参考訳): FSCIL(Few-Shot Class-Incremental Learning)は、従来の知識を忘れずに最小限の例から新しいクラスを逐次学習するモデルに挑戦する。
現在のFSCIL法は、限られたデータセットに依存するため、一般化に苦慮することが多い。
拡散モデルはデータ拡張のためのパスを提供するが、それらの直接的な応用は意味的ミスアライメントや非効果的なガイダンスにつながる可能性がある。
本稿では拡散モデルとFSCIL分類器の相互強化ループを確立する新しいフレームワークであるDiffusion-Classifier Synergy(DCS)を紹介する。
DCSは、クラス化子の状態から派生した動的多面的報酬関数が拡散モデルを指示する報酬整合学習戦略を利用する。
この報奨システムは、2つのレベルで機能する: 特徴レベルは、プロトタイプアンコールされた最大平均差分と次元ワイドの分散マッチングを用いて意味的コヒーレンスと多様性を保証し、ロジットレベルは探索画像の生成を促進し、信頼度調整とクロスセッション混乱認識機構を通じてクラス間識別性を高める。
生成した画像が分類器を洗練し、改良された分類器状態がより良い報奨信号を与え、FSCILベンチマークの最先端性能を実証的に達成し、知識保持と新しいクラス学習の両方を大幅に向上させる。
関連論文リスト
- Plug-and-Play Prompt Refinement via Latent Feedback for Diffusion Model Alignment [54.17386822940477]
PromptLoopはプラグインとプレイの強化学習フレームワークで、遅延フィードバックをステップワイドな即興改善に組み込む。
この設計は、プロンプトベースのアライメントの柔軟性と一般性を維持しながら、拡散RLアプローチと構造的な類似性を実現する。
論文 参考訳(メタデータ) (2025-10-01T02:18:58Z) - Diffusion-Augmented Contrastive Learning: A Noise-Robust Encoder for Biosignal Representations [0.4061135251278187]
本稿では,拡散モデルと教師付きコントラスト学習の概念を融合した,拡散拡張コントラスト学習(DACL)を提案する。
Scattering Transformer(ST)機能に基づいてトレーニングされた軽量変分オートエンコーダ(VAE)によって作成された潜時空間で動作する。
U-Netスタイルのエンコーダは、教師付きコントラスト目標を用いて訓練され、様々な拡散時間ステップでクラス識別とノイズとの堅牢性のバランスをとる表現を学ぶ。
論文 参考訳(メタデータ) (2025-09-24T12:15:35Z) - Learning from Heterogeneity: Generalizing Dynamic Facial Expression Recognition via Distributionally Robust Optimization [23.328511708942045]
Heterogeneity-Aware Distributional Framework (HDF) は、時間周波数モデリングを強化し、ハードサンプルによる不均衡を軽減するために設計された。
時間周波数分散アテンションモジュール(DAM)は、時間的一貫性と周波数ロバスト性の両方をキャプチャする。
適応最適化モジュール 分散対応スケーリングモジュール (DSM) は、動的に分類と対照的な損失のバランスをとるために導入された。
論文 参考訳(メタデータ) (2025-07-21T16:21:47Z) - DDAE++: Enhancing Diffusion Models Towards Unified Generative and Discriminative Learning [53.27049077100897]
生成前訓練は差別的な表現をもたらし、統一された視覚生成と理解への道を開くことが示されている。
この研究は自己条件付けを導入し、ネットワークに固有のリッチなセマンティクスを内部的に活用し、独自のデコード層をガイドする。
提案手法は、FIDの生成と認識の精度を1%の計算オーバーヘッドで向上させ、多様な拡散アーキテクチャで一般化する。
論文 参考訳(メタデータ) (2025-05-16T08:47:16Z) - Beyond Synthetic Replays: Turning Diffusion Features into Few-Shot Class-Incremental Learning Knowledge [36.22704733553466]
FSCIL(Few-shot class-incremental Learning)は、非常に限られたトレーニングデータのために困難である。
最近の研究は、これらの課題に対処するために、生成モデル、特に安定拡散(SD)を調査している。
そこで,Diffusion-FSCILを導入し,実画像の特徴を捉え,SDから4つの相乗的特徴型を抽出する。
論文 参考訳(メタデータ) (2025-03-30T11:20:08Z) - Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need [83.10178754323955]
わずかなショットラーニングにより、モデルがいくつかのラベル付き例から一般化できる。
本稿では,Unbiased Max-Min Embedding Classification (UMMEC)法を提案する。
本手法は最小ラベル付きデータを用いて分類性能を著しく向上させ, 注釈付きLの最先端化を推し進める。
論文 参考訳(メタデータ) (2025-03-28T07:23:07Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。