論文の概要: Named Entity Recognition in COVID-19 tweets with Entity Knowledge Augmentation
- arxiv url: http://arxiv.org/abs/2510.04001v1
- Date: Sun, 05 Oct 2025 02:22:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.385461
- Title: Named Entity Recognition in COVID-19 tweets with Entity Knowledge Augmentation
- Title(参考訳): エンティティ知識強化による新型コロナウイルスツイートのエンティティ認識
- Authors: Xuankang Zhang, Jiangming Liu,
- Abstract要約: 新型コロナウイルスに対する新しいエンティティ知識強化アプローチを提案する。
提案するエンティティ知識の強化により,完全教師付き設定と少数ショット設定の両方において,NER性能が向上する。
- 参考スコア(独自算出の注目度): 3.8390058921374615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic causes severe social and economic disruption around the world, raising various subjects that are discussed over social media. Identifying pandemic-related named entities as expressed on social media is fundamental and important to understand the discussions about the pandemic. However, there is limited work on named entity recognition on this topic due to the following challenges: 1) COVID-19 texts in social media are informal and their annotations are rare and insufficient to train a robust recognition model, and 2) named entity recognition in COVID-19 requires extensive domain-specific knowledge. To address these issues, we propose a novel entity knowledge augmentation approach for COVID-19, which can also be applied in general biomedical named entity recognition in both informal text format and formal text format. Experiments carried out on the COVID-19 tweets dataset and PubMed dataset show that our proposed entity knowledge augmentation improves NER performance in both fully-supervised and few-shot settings. Our source code is publicly available: https://github.com/kkkenshi/LLM-EKA/tree/master
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックは、世界中で深刻な社会的・経済的混乱を引き起こし、ソーシャルメディア上で議論されるさまざまなテーマを提起する。
ソーシャルメディア上で表現されたパンデミックに関連する名前の特定は、パンデミックに関する議論を理解する上で基本的で重要である。
しかし、以下の課題により、このトピックについて名前付きエンティティ認識について限定的な研究がなされている。
1)ソーシャルメディアにおける新型コロナウイルス(COVID-19)のテキストは非公式であり、アノテーションが頑健な認識モデルを訓練するには稀で不十分である。
2) 新型コロナウイルスにおける名前付きエンティティ認識には、広範囲にわたるドメイン固有の知識が必要である。
これらの課題に対処するために,本研究では,非公式テキスト形式と形式テキスト形式の両方において,一般の生物医学的名前付きエンティティ認識にも適用可能な,新型コロナウイルスの新しいエンティティ知識増強手法を提案する。
COVID-19のツイートデータセットとPubMedデータセットで実施された実験では、提案したエンティティ知識の強化により、完全に教師された設定と数ショット設定の両方でNERのパフォーマンスが向上することが示された。
私たちのソースコードは、https://github.com/kkkenshi/LLM-EKA/tree/masterで公開されています。
関連論文リスト
- Exploring a Hybrid Deep Learning Framework to Automatically Discover
Topic and Sentiment in COVID-19 Tweets [2.3940819037450987]
新型コロナウイルスは、世界的な公衆衛生問題や、経済危機、失業、精神的苦痛などの問題を引き起こしている。
このパンデミックは世界中で致命的であり、多くの人々が感染症だけでなく、問題、ストレス、不思議、恐怖、恨み、憎しみに悩まされている。
Twitterは、非常に影響力のあるソーシャルメディアプラットフォームであり、健康関連情報、ニュース、意見、世論などの重要な情報源である。
論文 参考訳(メタデータ) (2023-12-02T16:58:17Z) - EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and
Dictionary-based Named Entity Recognition from Medical Text [32.73124984242397]
我々は、ディープラーニングと辞書に基づく名前付きエンティティ認識のための、使い易いエンドツーエンドパイプラインを開発した。
パイプラインは、大規模な医学研究論文収集(CORD-19)や生テキストにアクセスし、処理することができる。
出力は、検出されたエンティティと注釈付きテキストを含むファイルの公開可能なランクリストとグラフで構成されている。
論文 参考訳(メタデータ) (2023-04-16T15:17:56Z) - METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19
Related Tweets [13.35986397208115]
本稿では、医療機関と新型コロナウイルス関連ツイートのターゲット感情を含むデータセットであるMETS-CoVをリリースする。
私たちの知る限りでは、METS-CoVは、新型コロナウイルス関連ツイートの医療機関とそれに対応する感情を収集する最初のデータセットです。
論文 参考訳(メタデータ) (2022-09-28T01:55:14Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - Knowledge-Rich Self-Supervised Entity Linking [58.838404666183656]
Knowledge-RIch Self-Supervision(KRISSBERT$)は400万のUMLSエンティティのためのユニバーサルエンティティリンカーである。
提案手法はゼロショット法と少数ショット法を仮定し,利用可能であればエンティティ記述やゴールドレファレンスラベルを簡単に組み込むことができる。
ラベル付き情報を一切使わずに400万のUMLSエンティティのためのユニバーサルエンティティリンカである$tt KRISSBERT$を生成する。
論文 参考訳(メタデータ) (2021-12-15T05:05:12Z) - A Dynamic Topic Identification and Labeling Approach of COVID-19 Tweets [3.097385298197292]
新型コロナウイルスの感染拡大は、世界中の多くの人々のソーシャルメディア利用に影響している。
本稿では、新型コロナウイルスのツイートの適切なラベルで重要なトピックを動的に識別する問題を定式化し、より広範な世論を概説する。
論文 参考訳(メタデータ) (2021-08-13T16:51:04Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
ソーシャルメディアプラットフォームは、新型コロナウイルス(COVID-19)に関する世界的な会話の手段として機能している。
本稿では,パンデミックを取り巻くソーシャルメディア会話の重要コンテンツと特徴の分析,マイニング,追跡のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-22T00:45:50Z) - Named Entity Recognition for Social Media Texts with Semantic
Augmentation [70.44281443975554]
名前付きエンティティ認識のための既存のアプローチは、短いテキストと非公式テキストで実行される場合、データ空間の問題に悩まされる。
そこで我々は,NER によるソーシャルメディアテキストに対するニューラルベースアプローチを提案し,ローカルテキストと拡張セマンティクスの両方を考慮に入れた。
論文 参考訳(メタデータ) (2020-10-29T10:06:46Z) - Artificial Intelligence (AI) in Action: Addressing the COVID-19 Pandemic
with Natural Language Processing (NLP) [8.281080540533559]
自然言語処理は、新型コロナウイルスのパンデミックによって緊急に必要とされる多くの情報に対処するために適用することができる。
このレビューでは、約150のNLP研究と、新型コロナウイルスのパンデミックに対処する50以上のシステムとデータセットを調査します。
論文 参考訳(メタデータ) (2020-10-09T22:10:43Z) - CO-Search: COVID-19 Information Retrieval with Semantic Search, Question
Answering, and Abstractive Summarization [53.67205506042232]
CO-Searchは、新型コロナウイルスの文献上の複雑なクエリを処理するように設計された、レトリバーランサーセマンティック検索エンジンである。
ドメイン固有の比較的限られたデータセットを考慮し、文書の段落と引用の2部グラフを生成する。
TREC-COVID情報検索課題のデータに基づいて,本システムの評価を行った。
論文 参考訳(メタデータ) (2020-06-17T01:32:48Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
世界保健機関(WHO)は、SARS-CoV-2ウイルスによる新型コロナウイルスの感染をパンデミックと宣言した。
我々は、機械学習と、より広範に、人工知能を用いた最近の研究の概要を、新型コロナウイルス危機の多くの側面に取り組むために提示する。
論文 参考訳(メタデータ) (2020-03-25T12:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。