論文の概要: Just-in-time Episodic Feedback Hinter: Leveraging Offline Knowledge to Improve LLM Agents Adaptation
- arxiv url: http://arxiv.org/abs/2510.04373v1
- Date: Sun, 05 Oct 2025 21:34:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.611544
- Title: Just-in-time Episodic Feedback Hinter: Leveraging Offline Knowledge to Improve LLM Agents Adaptation
- Title(参考訳): Just-in-time Episodic Feedback Hinter: オフライン知識を活用したLLMエージェント適応の改善
- Authors: Hadi Nekoei, Aman Jaiswal, Patrice Bechard, Oleh Shliazhko, Orlando Marquez Ayala, Mathieu Reymond, Massimo Caccia, Alexandre Drouin, Sarath Chandar, Alexandre Lacoste,
- Abstract要約: JEF Hinterは、オフライントレースをコンパクトでコンテキスト対応のヒントに蒸留するエージェントシステムである。
ズーム機構は、長い軌道における決定的なステップを強調し、戦略と落とし穴の両方をキャプチャする。
MiniWoB++、WorkArena-L1、WebArena-Liteの実験は、JSF Hinterが一貫して強力なベースラインを上回っていることを示している。
- 参考スコア(独自算出の注目度): 77.90555621662345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model (LLM) agents perform well in sequential decision-making tasks, but improving them on unfamiliar domains often requires costly online interactions or fine-tuning on large expert datasets. These strategies are impractical for closed-source models and expensive for open-source ones, with risks of catastrophic forgetting. Offline trajectories offer reusable knowledge, yet demonstration-based methods struggle because raw traces are long, noisy, and tied to specific tasks. We present Just-in-time Episodic Feedback Hinter (JEF Hinter), an agentic system that distills offline traces into compact, context-aware hints. A zooming mechanism highlights decisive steps in long trajectories, capturing both strategies and pitfalls. Unlike prior methods, JEF Hinter leverages both successful and failed trajectories, extracting guidance even when only failure data is available, while supporting parallelized hint generation and benchmark-independent prompting. At inference, a retriever selects relevant hints for the current state, providing targeted guidance with transparency and traceability. Experiments on MiniWoB++, WorkArena-L1, and WebArena-Lite show that JEF Hinter consistently outperforms strong baselines, including human- and document-based hints.
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントは、シーケンシャルな意思決定タスクでうまく機能するが、馴染みのないドメインでそれらを改善するには、コストのかかるオンラインインタラクションや、大規模な専門家データセットの微調整が必要になることが多い。
これらの戦略はクローズドソースモデルには実用的ではなく、オープンソースモデルには高価である。
オフラインの軌跡は再利用可能な知識を提供するが、生の痕跡が長く、騒々しく、特定のタスクに結びついているため、デモベースの手法は困難である。
JEF Hinter(Just-in-time Episodic Feedback Hinter)は、オフライントレースをコンパクトでコンテキスト対応のヒントに蒸留するエージェントシステムである。
ズーム機構は、長い軌道における決定的なステップを強調し、戦略と落とし穴の両方をキャプチャする。
従来の方法とは異なり、JSF Hinterは成功したトラジェクトリと失敗したトラジェクトリの両方を活用し、並列化されたヒント生成とベンチマーク非依存のプロンプトをサポートしながら、障害データのみが利用できる場合でもガイダンスを抽出する。
推論時に、検索者は現在の状態に関する関連ヒントを選択し、透明性とトレーサビリティを備えたターゲットガイダンスを提供する。
MiniWoB++、WorkArena-L1、WebArena-Liteの実験は、JSF Hinterが人間やドキュメントベースのヒントを含む強力なベースラインを一貫して上回っていることを示している。
関連論文リスト
- GRIL: Knowledge Graph Retrieval-Integrated Learning with Large Language Models [59.72897499248909]
本稿では,Large Language Models (LLM) を用いたエンドツーエンド学習のための新しいグラフ検索手法を提案する。
抽出したサブグラフでは, 構造的知識と意味的特徴をそれぞれ軟式トークンと言語化グラフで符号化し, LLMに注入する。
提案手法は、複雑な推論タスクに対する結合グラフ-LLM最適化の強みを検証し、最先端の性能を一貫して達成する。
論文 参考訳(メタデータ) (2025-09-20T02:38:00Z) - WebSailor-V2: Bridging the Chasm to Proprietary Agents via Synthetic Data and Scalable Reinforcement Learning [73.91893534088798]
WebSailorは、この重要な機能を組み込むように設計された、完全なポストトレーニング方法論である。
我々のアプローチは、構造化サンプリングと情報難読化によって、新しい、不確実なタスクを生成することである。
WebSailorは複雑な情報検索タスクにおいて、すべてのオープンソースエージェントを著しく上回る。
論文 参考訳(メタデータ) (2025-09-16T17:57:03Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - LaMDAgent: An Autonomous Framework for Post-Training Pipeline Optimization via LLM Agents [3.6117068575553595]
トレーニング後の完全なパイプラインを自律的に構築し、最適化するフレームワークであるLaMDAgentを紹介します。
LaMDAgentは、ツールの使用精度を9.0ポイント向上し、命令追従機能を保持する。
従来の人間主導の探査で見落とされがちな効果的なポストトレーニング戦略を明らかにする。
論文 参考訳(メタデータ) (2025-05-28T04:30:51Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
本稿では,新しい大規模言語モデル (LLM) によるエージェントフレームワークを提案する。
動的に進化する知識を活用することで、クエリを反復的に洗練し、文脈的証拠をフィルタリングする。
提案システムは、更新されたコンテキストの競合的および協調的な共有をサポートする。
論文 参考訳(メタデータ) (2025-03-17T15:27:02Z) - Emulating Retrieval Augmented Generation via Prompt Engineering for Enhanced Long Context Comprehension in LLMs [23.960451986662996]
本稿では,レトリーバル拡張生成(RAG)を特殊エンジニアリングとチェーンオブ思考推論によりエミュレートする手法を提案する。
我々は,BABILong から選択したタスクに対するアプローチを評価し,大量の散逸テキストを用いた標準 bAbI QA 問題をインターリーブする。
論文 参考訳(メタデータ) (2025-02-18T02:49:40Z) - Adaptive Distraction: Probing LLM Contextual Robustness with Automated Tree Search [76.54475437069395]
大きな言語モデル(LLM)は、意味的に一貫性があるがタスクに依存しないコンテキスト情報に直面している場合、元のパフォーマンスを維持するのに苦労することが多い。
本稿では,木探索に基づく動的散逸生成フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-03T18:43:36Z) - Learning From Failure: Integrating Negative Examples when Fine-tuning Large Language Models as Agents [41.14201835950814]
大規模言語モデル(LLM)は、検索エンジンなどのツールを介して環境と対話するエージェントとして機能することに成功した。
これまでの研究は、LLMと環境の間の相互作用軌跡を初めて収集し、小さなモデルを微調整するためにタスクを完了した軌道のみを用いていた。
これらの軌道からLLMは適切な品質制御と微調整戦略によって学習することができると我々は主張する。
論文 参考訳(メタデータ) (2024-02-18T17:10:07Z) - A Simple Solution for Offline Imitation from Observations and Examples
with Possibly Incomplete Trajectories [122.11358440078581]
オフラインの模倣は、任意のインタラクションがコストがかかり、専門家のアクションが利用できない現実世界のシナリオで有用である。
本研究では,タスク固有の専門的状態とタスクに依存しない非専門的状態-アクションペアのみを利用できるMPPを解決するために,観察から学習するトラジェクトリ・アウェア・ラーニング(TAILO)を提案する。
論文 参考訳(メタデータ) (2023-11-02T15:41:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。