論文の概要: Score-based Greedy Search for Structure Identification of Partially Observed Linear Causal Models
- arxiv url: http://arxiv.org/abs/2510.04378v1
- Date: Sun, 05 Oct 2025 21:50:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.617761
- Title: Score-based Greedy Search for Structure Identification of Partially Observed Linear Causal Models
- Title(参考訳): 部分観測された線形因果モデルの構造同定のためのスコアベースグレディサーチ
- Authors: Xinshuai Dong, Ignavier Ng, Haoyue Dai, Jiaqi Sun, Xiangchen Song, Peter Spirtes, Kun Zhang,
- Abstract要約: 本稿では,有意性保証を伴う潜伏変数を含む構造を識別するための,最初のスコアに基づく欲求探索手法を提案する。
そこで我々は,このモデルに対して,厳密な探索アルゴリズムであるLatent variable Greedy Equivalence Search (LGES) を設計する。
- 参考スコア(独自算出の注目度): 34.09555821357439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the structure of a partially observed causal system is essential to various scientific fields. Recent advances have focused on constraint-based causal discovery to solve this problem, and yet in practice these methods often face challenges related to multiple testing and error propagation. These issues could be mitigated by a score-based method and thus it has raised great attention whether there exists a score-based greedy search method that can handle the partially observed scenario. In this work, we propose the first score-based greedy search method for the identification of structure involving latent variables with identifiability guarantees. Specifically, we propose Generalized N Factor Model and establish the global consistency: the true structure including latent variables can be identified up to the Markov equivalence class by using score. We then design Latent variable Greedy Equivalence Search (LGES), a greedy search algorithm for this class of model with well-defined operators, which search very efficiently over the graph space to find the optimal structure. Our experiments on both synthetic and real-life data validate the effectiveness of our method (code will be publicly available).
- Abstract(参考訳): 部分的に観察された因果系の構造を特定することは、様々な科学分野において不可欠である。
近年、この問題を解決するために制約に基づく因果発見に焦点が当てられているが、実際には複数のテストやエラーの伝播に関わる問題に直面することが多い。
これらの問題はスコアベースの手法によって緩和される可能性があるため、部分的に観察されたシナリオを処理できるスコアベースの欲求探索法が存在するかどうかに大きな注目を集めている。
本研究では,識別可能性保証付き潜伏変数を含む構造を識別するための,最初のスコアベースグリーディ探索法を提案する。
具体的には、一般化N因子モデルを提案し、大域的整合性を確立する: 潜在変数を含む真の構造はスコアを用いてマルコフ同値クラスまで同定することができる。
そこで我々は,グラフ空間上で非常に効率的に探索し,最適構造を見つけるための,このモデルのクラスに対する欲求探索アルゴリズムであるLatent variable Greedy Equivalence Search (LGES) を設計する。
合成データと実生活データの両方に関する実験により,本手法の有効性が検証された(コード公開)。
関連論文リスト
- Constrained Auto-Regressive Decoding Constrains Generative Retrieval [71.71161220261655]
ジェネレーティブ検索は、従来の検索インデックスデータ構造を1つの大規模ニューラルネットワークに置き換えようとしている。
本稿では,制約とビームサーチという2つの本質的な視点から,制約付き自己回帰生成の固有の制約について検討する。
論文 参考訳(メタデータ) (2025-04-14T06:54:49Z) - Differentiable Causal Discovery For Latent Hierarchical Causal Models [19.373348700715578]
非線形潜在階層因果モデルの同定可能性に関する新しい理論的結果を示す。
我々は,そのようなモデルの構造を効率的に推定する,新しい微分可能な因果探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-29T09:08:20Z) - Score-based Causal Representation Learning: Linear and General Transformations [31.786444957887472]
本稿は、識別可能性と達成可能性の両方に対処する。
スコアに基づくアルゴリズムのクラスを設計し、識別性と達成性の両方を保証する。
結果は、構造化された合成データと画像データに関する実験によって検証される。
論文 参考訳(メタデータ) (2024-02-01T18:40:03Z) - A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
因果ネットワークの至る所で、因果関係の隠れ変数の存在を許容する因果発見のための新しい枠組みを提案する。
ランクに基づく潜在因果探索アルゴリズム(RLCD)を開発し、隠れ変数を効率よく探索し、その濃度を判定し、測定値と隠れ変数の両方に対して因果構造全体を発見する。
合成・実世界のパーソナリティデータセットを用いた実験結果から,有限サンプルケースにおける提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-12-18T07:57:39Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Frequent Itemset-driven Search for Finding Minimum Node Separators in
Complex Networks [61.2383572324176]
本稿では,データマイニングにおける頻繁なアイテムセットマイニングの概念をよく知られたメメティック検索フレームワークに統合する,頻繁なアイテムセット駆動探索手法を提案する。
頻繁なアイテムセット組換え演算子を反復的に使用して、高品質なソリューションで頻繁に発生するアイテムセットに基づいた有望な子孫ソリューションを生成する。
特に、29個の新しい上界を発見し、以前の18個の最もよく知られた境界と一致する。
論文 参考訳(メタデータ) (2022-01-18T11:16:40Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。