論文の概要: TAG:Tangential Amplifying Guidance for Hallucination-Resistant Diffusion Sampling
- arxiv url: http://arxiv.org/abs/2510.04533v1
- Date: Mon, 06 Oct 2025 06:53:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.715054
- Title: TAG:Tangential Amplifying Guidance for Hallucination-Resistant Diffusion Sampling
- Title(参考訳): TAG-Tangential Amplifying Guidance for Hallucination-Resistant Diffusion Smpling
- Authors: Hyunmin Cho, Donghoon Ahn, Susung Hong, Jee Eun Kim, Seungryong Kim, Kyong Hwan Jin,
- Abstract要約: タンジェンシャル増幅誘導(TAG)は、下層の拡散モデルを変更することなく、軌道信号のみで動作する。
この誘導過程を1次テイラー展開を利用して定式化する。
TAGは、最小限の計算加算で拡散サンプリング忠実度を改善する、プラグアンドプレイのアーキテクチャに依存しないモジュールである。
- 参考スコア(独自算出の注目度): 53.61290359948953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent diffusion models achieve the state-of-the-art performance in image generation, but often suffer from semantic inconsistencies or hallucinations. While various inference-time guidance methods can enhance generation, they often operate indirectly by relying on external signals or architectural modifications, which introduces additional computational overhead. In this paper, we propose Tangential Amplifying Guidance (TAG), a more efficient and direct guidance method that operates solely on trajectory signals without modifying the underlying diffusion model. TAG leverages an intermediate sample as a projection basis and amplifies the tangential components of the estimated scores with respect to this basis to correct the sampling trajectory. We formalize this guidance process by leveraging a first-order Taylor expansion, which demonstrates that amplifying the tangential component steers the state toward higher-probability regions, thereby reducing inconsistencies and enhancing sample quality. TAG is a plug-and-play, architecture-agnostic module that improves diffusion sampling fidelity with minimal computational addition, offering a new perspective on diffusion guidance.
- Abstract(参考訳): 最近の拡散モデルは、画像生成における最先端のパフォーマンスを達成するが、しばしば意味的な矛盾や幻覚に悩まされる。
様々な推論時ガイダンス手法は生成を促進できるが、外部の信号やアーキテクチャの変更に頼って間接的に動作することが多く、計算オーバーヘッドが増大する。
本稿では,より効率的かつ直接的な誘導法であるTangential Amplifying Guidance (TAG)を提案する。
TAGは、中間サンプルを投影ベースとして利用し、このベースに対して推定されたスコアの接点成分を増幅してサンプリング軌道を補正する。
本稿では,一階のTaylor拡張を利用して,高確率領域に向けて接尾辞成分を増幅することにより,不整合を低減し,サンプル品質を向上させることを実証する。
TAGは、最小限の計算加算で拡散サンプリング忠実度を向上し、拡散誘導の新しい視点を提供する、プラグアンドプレイなアーキテクチャに依存しないモジュールである。
関連論文リスト
- Test-Time Anchoring for Discrete Diffusion Posterior Sampling [38.507644561076894]
後方サンプリングは、事前訓練された離散拡散基礎モデルにとって難しい問題である。
マスク拡散基礎モデルのためのAnchored Posterior Smpling (APS) を提案する。
本手法は線形および非線形逆問題に対する離散拡散サンプリング器の最先端性能を実現する。
論文 参考訳(メタデータ) (2025-10-02T17:58:37Z) - Discrete Guidance Matching: Exact Guidance for Discrete Flow Matching [36.348940136801296]
この問題に対処するために、離散データのための新しいガイダンスフレームワークを提案する。
学習した離散フローマッチングモデルにより、所望の分布の正確な遷移率を導出する。
本稿では,エネルギー誘導型シミュレーションと嗜好アライメントによるテキスト・ツー・イメージ生成とマルチモーダル理解タスクの有効性を示す。
論文 参考訳(メタデータ) (2025-09-26T05:51:31Z) - Training-Free Stein Diffusion Guidance: Posterior Correction for Sampling Beyond High-Density Regions [46.59494117137471]
自由拡散誘導の訓練は、追加の訓練なしに既成の分類器を活用する柔軟な方法を提供する。
本稿では,SOC を対象とする新たなトレーニングフリーフレームワークである Stein Diffusion Guidance (SDG) を紹介する。
分子低密度サンプリングタスクの実験は、SDGが標準のトレーニングフリーガイダンス手法を一貫して上回っていることを示唆している。
論文 参考訳(メタデータ) (2025-07-07T21:14:27Z) - Zigzag Diffusion Sampling: Diffusion Models Can Self-Improve via Self-Reflection [28.82743020243849]
既存のテキストと画像の拡散モデルは、しばしば挑戦的なプロンプトに対して高い画質と高いプロンプトのアライメントを維持するのに失敗する。
本稿では, 交互に denoising と inversion を行う拡散自己回帰法を提案する。
我々は,新しい自己反射型拡散サンプリング法であるZigzag Diffusion Smpling (Z-Sampling) を導出した。
論文 参考訳(メタデータ) (2024-12-14T16:42:41Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Insights into Closed-form IPM-GAN Discriminator Guidance for Diffusion Modeling [11.68361062474064]
本稿では,GAN判別器がLangevinに基づくサンプリングに与える影響を理論的に解析する枠組みを提案する。
提案手法は既存の加速拡散技術と組み合わせて潜在空間画像生成を改善することができることを示す。
論文 参考訳(メタデータ) (2023-06-02T16:24:07Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - End-to-End Diffusion Latent Optimization Improves Classifier Guidance [81.27364542975235]
拡散潜水剤(DOODL)の直接最適化は,新しいガイダンス手法である。
拡散潜伏剤の最適化によるプラグアンドプレイ誘導を可能にする。
計算と人的評価の指標において、一段階の分類器ガイダンスよりも優れている。
論文 参考訳(メタデータ) (2023-03-23T22:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。