論文の概要: Discrete Guidance Matching: Exact Guidance for Discrete Flow Matching
- arxiv url: http://arxiv.org/abs/2509.21912v1
- Date: Fri, 26 Sep 2025 05:51:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.213647
- Title: Discrete Guidance Matching: Exact Guidance for Discrete Flow Matching
- Title(参考訳): 離散的ガイダンスマッチング:離散的フローマッチングのための厳密なガイダンス
- Authors: Zhengyan Wan, Yidong Ouyang, Liyan Xie, Fang Fang, Hongyuan Zha, Guang Cheng,
- Abstract要約: この問題に対処するために、離散データのための新しいガイダンスフレームワークを提案する。
学習した離散フローマッチングモデルにより、所望の分布の正確な遷移率を導出する。
本稿では,エネルギー誘導型シミュレーションと嗜好アライメントによるテキスト・ツー・イメージ生成とマルチモーダル理解タスクの有効性を示す。
- 参考スコア(独自算出の注目度): 36.348940136801296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Guidance provides a simple and effective framework for posterior sampling by steering the generation process towards the desired distribution. When modeling discrete data, existing approaches mostly focus on guidance with the first-order Taylor approximation to improve the sampling efficiency. However, such an approximation is inappropriate in discrete state spaces since the approximation error could be large. A novel guidance framework for discrete data is proposed to address this problem: We derive the exact transition rate for the desired distribution given a learned discrete flow matching model, leading to guidance that only requires a single forward pass in each sampling step, significantly improving efficiency. This unified novel framework is general enough, encompassing existing guidance methods as special cases, and it can also be seamlessly applied to the masked diffusion model. We demonstrate the effectiveness of our proposed guidance on energy-guided simulations and preference alignment on text-to-image generation and multimodal understanding tasks. The code is available through https://github.com/WanZhengyan/Discrete-Guidance-Matching/tree/main.
- Abstract(参考訳): ガイダンスは、生成プロセスを所望の分布に向けて操ることで、後方サンプリングのためのシンプルで効果的なフレームワークを提供する。
離散データをモデリングする場合、既存のアプローチは主にサンプリング効率を改善するために、一階述語Taylor近似を用いたガイダンスに重点を置いている。
しかし、近似誤差が大きいため、離散状態空間ではそのような近似は不適切である。
学習した離散フローマッチングモデルが与えられた場合、所望の分布の正確な遷移率を導出し、各サンプリングステップで1回のフォワードパスしか必要とせず、効率を大幅に向上するガイダンスを導出する。
この統一された新しいフレームワークは、一般的なものであり、既存のガイダンス手法を特殊なケースとして含み、マスク拡散モデルにもシームレスに適用することができる。
本稿では,エネルギー誘導型シミュレーションと嗜好アライメントによるテキスト・ツー・イメージ生成とマルチモーダル理解タスクの有効性を示す。
コードはhttps://github.com/WanZhengyan/Discrete-Guidance-Matching/tree/mainから入手できる。
関連論文リスト
- Source-Guided Flow Matching [7.888172595458005]
本稿ではソースガイド型フローマッチングフレームワークを提案する。
事前訓練されたベクトル場をそのまま保ちながら、ソース分布を直接修正する。
これにより、ガイダンス問題は、ソース分布からサンプリングする、明確に定義された問題に還元される。
論文 参考訳(メタデータ) (2025-08-20T15:56:25Z) - Direct Distributional Optimization for Provable Alignment of Diffusion Models [39.048284342436666]
分布最適化の観点から拡散モデルの新しいアライメント手法を提案する。
まず、確率分布に対する一般正規化損失最小化として問題を定式化する。
本研究では,Doob の $h$-transform 技術を用いてスコア関数を近似することにより,学習した分布からのサンプリングを可能にする。
論文 参考訳(メタデータ) (2025-02-05T07:35:15Z) - Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
拡散強制(Diffusion Forcing)は、拡散モデルをトレーニングし、トークンの集合に独立した音レベルを付与する、新たなトレーニングパラダイムである。
因果的次トーケン予測モデルを訓練して1つまたは複数の未来のトークンを生成することで、シーケンス生成モデルに拡散強制を適用する。
論文 参考訳(メタデータ) (2024-07-01T15:43:25Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
観測誘導拡散確率モデル(OGDM)と呼ばれる新しい拡散に基づく画像生成法を提案する。
本手法は,観測プロセスの指導をマルコフ連鎖と統合することにより,トレーニング目標を再構築する。
本研究では,強力な拡散モデルベースライン上での多様な推論手法を用いたトレーニングアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-10-06T06:29:06Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。