論文の概要: Power Transform Revisited: Numerically Stable, and Federated
- arxiv url: http://arxiv.org/abs/2510.04995v1
- Date: Mon, 06 Oct 2025 16:32:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.986395
- Title: Power Transform Revisited: Numerically Stable, and Federated
- Title(参考訳): 電力変換再考:数値安定・フェデレーション
- Authors: Xuefeng Xu, Graham Cormode,
- Abstract要約: 電力変換の直接実装は、重大な数値不安定性に悩まされ、誤った結果やクラッシュにつながる可能性がある。
電力変換をフェデレートした学習環境に拡張し,数値的および分布的課題に対処する。
- 参考スコア(独自算出の注目度): 8.64427265159929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Power transforms are popular parametric techniques for making data more Gaussian-like, and are widely used as preprocessing steps in statistical analysis and machine learning. However, we find that direct implementations of power transforms suffer from severe numerical instabilities, which can lead to incorrect results or even crashes. In this paper, we provide a comprehensive analysis of the sources of these instabilities and propose effective remedies. We further extend power transforms to the federated learning setting, addressing both numerical and distributional challenges that arise in this context. Experiments on real-world datasets demonstrate that our methods are both effective and robust, substantially improving stability compared to existing approaches.
- Abstract(参考訳): パワートランスフォーメーションは、データをガウス風にするための一般的なパラメトリック技術であり、統計解析や機械学習における前処理のステップとして広く使われている。
しかし、電力変換の直接実装は深刻な数値不安定に悩まされ、誤った結果やクラッシュにつながる可能性がある。
本稿では,これらの不安定性の原因を包括的に分析し,効果的な対策を提案する。
我々はさらに、この文脈で発生する数値的および分布的課題に対処しながら、パワートランスフォーメーションをフェデレートされた学習環境に拡張する。
実世界のデータセットの実験により、我々の手法は有効かつ堅牢であり、既存の手法に比べて安定性が著しく向上していることが示された。
関連論文リスト
- Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
低ランク計算としての効率的な数値学習と推論アルゴリズムはトランスフォーマーに基づく適応学習に優れた性能を持つことを示す。
我々は、等級モデルが適応性を改善しながら一般化にどのように影響するかを分析する。
適切なマグニチュードベースのテストは,テストパフォーマンスに多少依存している,と結論付けています。
論文 参考訳(メタデータ) (2024-06-24T23:00:58Z) - Power Transformer Fault Prediction Based on Knowledge Graphs [9.690455133923667]
広範なフォールトデータの不足により、機械学習技術を効果的に適用することは困難である。
我々は,知識グラフ(KG)技術と勾配向上決定木(GBDT)を併用した新しい手法を提案する。
本手法は, 変圧器の故障や過去の運用データに影響を及ぼす様々な要因を統合することで, 少数の高次元データから効率的に学習できるように設計されている。
論文 参考訳(メタデータ) (2024-02-11T19:14:28Z) - Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data [24.24053233941972]
本稿では,マルチモーダル出力シナリオにおける予測精度向上のためのトランスフォーマーを用いた新しい手法を提案する。
提案手法はトランスフォーマーアーキテクチャと新しいグラフベースのハイパーパラメータ最適化手法を統合する。
実世界のデータ10枚しか入手できない慣性閉じ込め核融合実験へのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-12-06T17:53:06Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - Robust Networked Federated Learning for Localization [7.332862402432447]
本稿では,データを複数のデバイスに分散するフェデレーション環境での非滑らかな近似問題に対処する。
本稿では,分散サブグラディエントフレームワークにおけるロバストな定式化を,これらの障害に対処するために明示的に設計した,$L_$-normを採用する手法を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:54:37Z) - Optimizing Non-Autoregressive Transformers with Contrastive Learning [74.46714706658517]
非自己回帰変換器(NAT)は、逐次順序ではなく全ての単語を同時に予測することにより、自動回帰変換器(AT)の推論遅延を低減する。
本稿では,データ分布ではなく,モデル分布からのサンプリングによるモダリティ学習の容易化を提案する。
論文 参考訳(メタデータ) (2023-05-23T04:20:13Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。