論文の概要: A Scalable AI Driven, IoT Integrated Cognitive Digital Twin for Multi-Modal Neuro-Oncological Prognostics and Tumor Kinetics Prediction using Enhanced Vision Transformer and XAI
- arxiv url: http://arxiv.org/abs/2510.05123v1
- Date: Tue, 30 Sep 2025 04:37:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:07.822851
- Title: A Scalable AI Driven, IoT Integrated Cognitive Digital Twin for Multi-Modal Neuro-Oncological Prognostics and Tumor Kinetics Prediction using Enhanced Vision Transformer and XAI
- Title(参考訳): 拡張視覚変換器とXAIを用いた多モード神経腫瘍学診断と腫瘍動態予測のためのスケーラブルAI駆動型IoT統合認知デジタルツイン
- Authors: Saptarshi Banerjee, Himadri Nath Saha, Utsho Banerjee, Rajarshi Karmakar, Jon Turdiev,
- Abstract要約: 本稿では,ウェアラブル頭蓋骨からのリアルタイム脳波信号と構造MRIデータを組み合わせて,動的・パーソナライズされた腫瘍モニタリングを行う認知デジタルツインフレームワークを提案する。
94.6%の精度、93.2%のリコール、そしてDiceのスコア0.91の精度で、このフレームワークはリアルタイムで解釈可能な神経診断のための新しい標準となる。
- 参考スコア(独自算出の注目度): 0.2174820084855635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuro-oncological prognostics are now vital in modern clinical neuroscience because brain tumors pose significant challenges in detection and management. To tackle this issue, we propose a cognitive digital twin framework that combines real-time EEG signals from a wearable skullcap with structural MRI data for dynamic and personalized tumor monitoring. At the heart of this framework is an Enhanced Vision Transformer (ViT++) that includes innovative components like Patch-Level Attention Regularization (PLAR) and an Adaptive Threshold Mechanism to improve tumor localization and understanding. A Bidirectional LSTM-based neural classifier analyzes EEG patterns over time to classify brain states such as seizure, interictal, and healthy. Grad-CAM-based heatmaps and a three.js-powered 3D visualization module provide interactive anatomical insights. Furthermore, a tumor kinetics engine predicts volumetric growth by looking at changes in MRI trends and anomalies from EEG data. With impressive accuracy metrics of 94.6% precision, 93.2% recall, and a Dice score of 0.91, this framework sets a new standard for real-time, interpretable neurodiagnostics. It paves the way for future advancements in intelligent brain health monitoring.
- Abstract(参考訳): 脳腫瘍は検出と管理に重大な課題をもたらすため、現代の臨床神経科学では神経腫瘍学が不可欠である。
この問題に対処するために,ウェアラブル頭蓋骨からのリアルタイム脳波信号と構造MRIデータを組み合わせて,ダイナミックでパーソナライズされた腫瘍モニタリングを行う認知デジタルツインフレームワークを提案する。
このフレームワークの中心にあるViT++(Enhanced Vision Transformer)は、Patch-Level Attention Regularization (PLAR)やAdaptive Threshold Mechanism(Adaptive Threshold Mechanism)などの革新的なコンポーネントを含んでいる。
双方向LSTMベースの神経分類器は、時間とともに脳波パターンを分析して、発作、間質、健康などの脳状態を分類する。
Grad-CAMベースのヒートマップと3.jsを使った3D可視化モジュールは、インタラクティブな解剖学的洞察を提供する。
さらに, 腫瘍運動学エンジンは, 脳波データからMRIのトレンドや異常の変化を観察することにより, 体積成長を予測する。
94.6%の精度、93.2%のリコール、そしてDiceのスコア0.91の精度で、このフレームワークはリアルタイムで解釈可能な神経診断のための新しい標準となる。
それは、インテリジェントな脳の健康モニタリングにおける将来の進歩の道を開く。
関連論文リスト
- CE-RS-SBCIT A Novel Channel Enhanced Hybrid CNN Transformer with Residual, Spatial, and Boundary-Aware Learning for Brain Tumor MRI Analysis [0.7857499581522376]
このフレームワークは4つのコアイノベーションを通じて、局所的な細粒度とグローバルなコンテキストのキューを利用する。
このフレームワークは98.30%の精度、98.08%の感度、98.25%のF1スコア、98.43%の精度を実現している。
論文 参考訳(メタデータ) (2025-08-23T20:09:39Z) - Voxel-Level Brain States Prediction Using Swin Transformer [65.9194533414066]
本稿では, 4D Shifted Window (Swin) Transformer をエンコーダとして用い, 時間的情報を効率よく学習し, 畳み込みデコーダを用いて入力fMRIデータと同じ空間的, 時間的解像度で脳状態の予測を可能にするアーキテクチャを提案する。
前回の23.04s fMRI時系列に基づいて7.2sの安静時脳活動を予測すると,高い精度が得られた。
これは、人間の脳の時間的構造が高解像度でSwin Transformerモデルによって学習できることを示す有望な証拠である。
論文 参考訳(メタデータ) (2025-06-13T04:14:38Z) - BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
異種脳波とMEG記録を対象とする脳基礎モデルBrain Omniを提案する。
多様なデータソースを統一するために、脳の活動を離散表現に定量化する最初のトークンであるBrainTokenizerを紹介します。
EEGの合計1,997時間、MEGデータの656時間は、事前トレーニングのために公開されているソースからキュレーションされ、標準化されている。
論文 参考訳(メタデータ) (2025-05-18T14:07:14Z) - Patient-specific prediction of glioblastoma growth via reduced order modeling and neural networks [0.0]
本稿では,GBL成長の数学的モデルに対する概念実証を行い,リアルタイム予測と患者固有のパラメータ同定を可能にする。
ニューラルネットワークサロゲートは、腫瘍の進化からモデルパラメータへの逆マッピングを学習し、計算速度を著しく向上させる。
論文 参考訳(メタデータ) (2024-12-04T18:46:05Z) - Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
脳年齢ギャップ推定(BrainAGE)は、脳年齢を理解するための神経画像バイオマーカーである。
現在のアプローチでは、主にT1強調MRI(T1w MRI)データを使用し、構造脳情報のみをキャプチャする。
我々は,VGGに基づくアーキテクチャを用いたディープラーニングモデルを開発し,線形回帰を用いた予測を組み合わせた。
我々のモデルは3.95年の平均絶対誤差(MAE)とテストセットの$R2$ 0.943を達成し、類似したデータでトレーニングされた既存のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-12-01T21:54:08Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
脳腫瘍は、急速な成長と転移の可能性のために深刻な健康上の脅威となる。
本研究の目的は,脳腫瘍分類の効率と精度を向上させることである。
我々のアプローチは、ViT(Vision Transformer)、Capsule Neural Network(CapsNet)、ResNet-152やVGG16といった畳み込みニューラルネットワーク(CNN)など、最先端のディープラーニングアルゴリズムを組み合わせる。
論文 参考訳(メタデータ) (2024-10-31T07:28:06Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。