論文の概要: Percepta: High Performance Stream Processing at the Edge
- arxiv url: http://arxiv.org/abs/2510.05149v1
- Date: Thu, 02 Oct 2025 08:57:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:07.857321
- Title: Percepta: High Performance Stream Processing at the Edge
- Title(参考訳): Percepta: エッジでの高性能ストリーム処理
- Authors: Clarisse Sousa, Tiago Fonseca, Luis Lino Ferreira, Ricardo Venâncio, Ricardo Severino,
- Abstract要約: 本稿では、エッジでのAIワークロードをサポートするために設計された、軽量データストリーム処理(DSP)システムであるPerceptaを提案する。
その他の機能としては、データの正規化、異種プロトコル間の調和化、サンプリングレート、不足データや不完全データの堅牢なハンドリングなどがある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of real-time data and the proliferation of Internet of Things (IoT) devices have highlighted the limitations of cloud-centric solutions, particularly regarding latency, bandwidth, and privacy. These challenges have driven the growth of Edge Computing. Associated with IoT appears a set of other problems, like: data rate harmonization between multiple sources, protocol conversion, handling the loss of data and the integration with Artificial Intelligence (AI) models. This paper presents Percepta, a lightweight Data Stream Processing (DSP) system tailored to support AI workloads at the edge, with a particular focus on such as Reinforcement Learning (RL). It introduces specialized features such as reward function computation, data storage for model retraining, and real-time data preparation to support continuous decision-making. Additional functionalities include data normalization, harmonization across heterogeneous protocols and sampling rates, and robust handling of missing or incomplete data, making it well suited for the challenges of edge-based AI deployment.
- Abstract(参考訳): リアルタイムデータの台頭とIoT(Internet of Things)デバイスの普及は、特にレイテンシ、帯域幅、プライバシに関する、クラウド中心のソリューションの限界を強調している。
これらの課題はエッジコンピューティングの成長を促した。
IoTに関連する他の問題としては、複数のソース間のデータレートの調和、プロトコル変換、データの損失処理、人工知能(AI)モデルとの統合などがある。
本稿では,AIワークロードをエッジでサポートするための軽量データストリーム処理(DSP)システムであるPerceptaについて述べる。
報酬関数計算、モデル再トレーニングのためのデータストレージ、継続的意思決定をサポートするリアルタイムデータ準備など、特殊な機能を導入している。
その他の機能としては、データ正規化、異種プロトコルとサンプリングレート間の調和、不足データや不完全なデータの堅牢なハンドリングなどがあり、エッジベースのAIデプロイメントの課題に適している。
関連論文リスト
- Lightweight Task-Oriented Semantic Communication Empowered by Large-Scale AI Models [66.57755931421285]
大規模人工知能(LAI)モデルは、リアルタイム通信シナリオにおいて重大な課題を提起する。
本稿では,LAIモデルから知識を抽出・凝縮するために知識蒸留(KD)技術を活用することを提案する。
本稿では,反復推論の必要性を排除したプレストア圧縮機構を備えた高速蒸留法を提案する。
論文 参考訳(メタデータ) (2025-06-16T08:42:16Z) - On-device edge learning for IoT data streams: a survey [1.7186863539230333]
本稿では,ニューラルネットワーク(NN)と決定木(DT)の文脈におけるデバイス上でのトレーニングのための連続的学習手法について検討する。
データアーキテクチャ(バッチ対ストリーム)やネットワーク容量(クラウド対エッジ)といった重要な制約を強調します。
調査では、リソース制約のあるエッジデバイスにディープラーニングをデプロイする際の課題について詳述している。
論文 参考訳(メタデータ) (2025-02-25T02:41:23Z) - Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
我々は,AI強化データ拡張と均衡サンプリング戦略により,IIDからIDDへの非IIDデータ分布を近似する,フェデレーション最適化技術のための新しいプラグインを提案する。
論文 参考訳(メタデータ) (2024-10-31T11:13:47Z) - Breaking Resource Barriers in Speech Emotion Recognition via Data Distillation [64.36799373890916]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす。
モノのインターネットにおけるエッジデバイスの出現は、複雑なディープラーニングモデルを構築する上での課題を示している。
本研究では,IoTアプリケーションにおけるSERモデルの効率的な開発を容易にするためのデータ蒸留フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-21T13:10:46Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
本稿では,デバイス間のロードバランシングのための新しいデバイス・ツー・デバイス(D2D)支援型符号化学習手法(D2D-CFL)を提案する。
最小処理時間を達成するための最適圧縮率を導出し、収束時間との接続を確立する。
提案手法は,ユーザが継続的にトレーニングデータを生成するリアルタイム協調アプリケーションに有用である。
論文 参考訳(メタデータ) (2021-11-26T18:44:59Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - On the Use of Interpretable Machine Learning for the Management of Data
Quality [13.075880857448059]
我々は、解釈可能な機械学習を用いて、あらゆるデータ処理アクティビティをベースとした重要な機能を提供する。
私たちの目標は、少なくとも、収集されたデータセットで重要なものとして検出される機能に対して、データ品質を確保することです。
論文 参考訳(メタデータ) (2020-07-29T08:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。