論文の概要: Ocular-Induced Abnormal Head Posture: Diagnosis and Missing Data Imputation
- arxiv url: http://arxiv.org/abs/2510.05649v1
- Date: Tue, 07 Oct 2025 07:51:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:08.147481
- Title: Ocular-Induced Abnormal Head Posture: Diagnosis and Missing Data Imputation
- Title(参考訳): 眼性頭位異常 : 診断と欠測データ
- Authors: Saja Al-Dabet, Sherzod Turaev, Nazar Zaki, Arif O. Khan, Luai Eldweik,
- Abstract要約: AHP(Acular-induced abnormal head posture)は、眼疾患から生じる補充機構である。
本研究では,2つの相補的なディープラーニングフレームワークを通じて,両課題に対処する。
AHP-CADNetは自動診断のための多層注意融合フレームワークである。
カリキュラムベースの計算フレームワークは、欠落したデータを緩和するために設計されている。
- 参考スコア(独自算出の注目度): 1.7061463565692456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ocular-induced abnormal head posture (AHP) is a compensatory mechanism that arises from ocular misalignment conditions, such as strabismus, enabling patients to reduce diplopia and preserve binocular vision. Early diagnosis minimizes morbidity and secondary complications such as facial asymmetry; however, current clinical assessments remain largely subjective and are further complicated by incomplete medical records. This study addresses both challenges through two complementary deep learning frameworks. First, AHP-CADNet is a multi-level attention fusion framework for automated diagnosis that integrates ocular landmarks, head pose features, and structured clinical attributes to generate interpretable predictions. Second, a curriculum learning-based imputation framework is designed to mitigate missing data by progressively leveraging structured variables and unstructured clinical notes to enhance diagnostic robustness under realistic data conditions. Evaluation on the PoseGaze-AHP dataset demonstrates robust diagnostic performance. AHP-CADNet achieves 96.9-99.0 percent accuracy across classification tasks and low prediction errors for continuous variables, with MAE ranging from 0.103 to 0.199 and R2 exceeding 0.93. The imputation framework maintains high accuracy across all clinical variables (93.46-99.78 percent with PubMedBERT), with clinical dependency modeling yielding significant improvements (p < 0.001). These findings confirm the effectiveness of both frameworks for automated diagnosis and recovery from missing data in clinical settings.
- Abstract(参考訳): AHP(Ocular-induced abnormal head posture)は、視床不整形(英語版)などの視床不整形(英語版)状態から生じる補償機構であり、患者が両眼視力を低下させ、両眼視力を維持することができる。
早期診断は、顔面非対称性のような致死性や二次合併症を最小化するが、現在の臨床評価は主観的であり、不完全な医療記録によってさらに複雑である。
本研究では,2つの相補的なディープラーニングフレームワークを通じて,両課題に対処する。
まず、AHP-CADNetは、目印、頭部ポーズの特徴、構造化された臨床属性を統合して解釈可能な予測を生成する、自動診断のための多段階の注意融合フレームワークである。
第2に,リアルなデータ条件下での診断堅牢性を高めるために,構造化変数と非構造化臨床ノートを段階的に活用することにより,欠落データを軽減するためのカリキュラム学習ベースの計算フレームワークを設計する。
PoseGaze-AHPデータセットの評価は、堅牢な診断性能を示す。
AHP-CADNetは、分類タスクの96.9-99.0パーセントの精度と連続変数の予測誤差が低く、MAEは0.103から0.199、R2は0.93を超える。
この計算フレームワークは、全ての臨床変数(PubMedBERTでは93.46-99.78%)にわたって高い精度を維持し、臨床依存性モデリングは重要な改善をもたらす(p < 0.001)。
これらの結果から,臨床現場における欠失データの自動診断と回復のためのフレームワークの有効性が確認された。
関連論文リスト
- A Fully Automatic Framework for Intracranial Pressure Grading: Integrating Keyframe Identification, ONSD Measurement and Clinical Data [3.6652537579778106]
頭蓋内圧(ICP)上昇は脳機能に深刻な脅威をもたらし、時間的介入の監視を必要とする。
OnSD測定と臨床データを統合したICPグレーティングのための完全自動2段階フレームワークを提案する。
評価精度は0.845 pm 0.071$, 独立試験精度0.786であり, 従来のしきい値法よりも優れていた。
論文 参考訳(メタデータ) (2025-09-11T11:37:48Z) - DRetNet: A Novel Deep Learning Framework for Diabetic Retinopathy Diagnosis [8.234135343778993]
現在のDR検出システムは、画質の悪い画像、解釈可能性の欠如、ドメイン固有の知識の不十分な統合に苦慮している。
3つの革新的なコントリビューションを統合する新しいフレームワークを紹介します。
フレームワークの精度は92.7%、精度は92.5%、リコールは92.6%、F1スコアは92.5%、AUCは97.8%、mAPは0.96、MCCは0.85である。
論文 参考訳(メタデータ) (2025-09-01T02:27:16Z) - A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer [54.58205672910646]
RenalCLIPは、腎腫瘤の特徴、診断、予後のための視覚言語基盤モデルである。
腎がんの完全な臨床ワークフローにまたがる10のコアタスクにおいて、優れたパフォーマンスと優れた一般化性を実現した。
論文 参考訳(メタデータ) (2025-08-22T17:48:19Z) - Clinically-guided Data Synthesis for Laryngeal Lesion Detection [2.573786844054239]
そこで本研究では,Lyngeal endoscopic image-annotation pairを生成するために,Latent Diffusion Model(LDM)とControlNetアダプタを併用した新しいアプローチを提案する。
提案手法はCADx/eモデルのトレーニングデータセットの拡張に有効であり,喉頭科学における評価プロセスの強化に有効である。
論文 参考訳(メタデータ) (2025-08-08T09:55:54Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabricは、総合的なCXR解釈のための視覚的およびテキスト分析を統合するマルチエージェント、マルチモーダル推論フレームワークである。
システムは、病理診断に特殊なCXRエージェント、正確な解剖学的構造に視覚所見をマッピングする解剖学的解釈エージェント、および視覚的、解剖学的、臨床データを透明かつ証拠に基づく診断に合成する大規模なマルチモーダル推論モデルを利用した推論エージェントを使用する。
論文 参考訳(メタデータ) (2025-06-17T03:10:33Z) - Improving Clinical Decision Support through Interpretable Machine Learning and Error Handling in Electronic Health Records [6.594072648536156]
Trust-MAPSは、臨床領域の知識を高次元の混合整数プログラミングモデルに変換する。
信頼スコアは、臨床決定支援タスクの予測性能を高めるだけでなく、MLモデルに解釈可能性を与える臨床的に有意義な特徴として出現する。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Towards Reliable Medical Image Segmentation by Modeling Evidential Calibrated Uncertainty [57.023423137202485]
医用画像のセグメンテーションの信頼性に関する懸念が臨床医の間で続いている。
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を活用することで、医用画像分割の確率と不確実性を明示的にモデル化する。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。