論文の概要: GLVD: Guided Learned Vertex Descent
- arxiv url: http://arxiv.org/abs/2510.06046v1
- Date: Tue, 07 Oct 2025 15:40:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:08.322381
- Title: GLVD: Guided Learned Vertex Descent
- Title(参考訳): GLVD:学習した頂点の輝き
- Authors: Pol Caselles Rico, Francesc Moreno Noguer,
- Abstract要約: GLVDは,少数画像からの3次元顔再構成のためのハイブリッド手法である。
頂点ごとのニューラルネットワーク最適化と、動的に予測される3Dキーポイントからのグローバルな構造ガイダンスを統合する。
GLVDはシングルビュー設定で最先端のパフォーマンスを実現し、マルチビューシナリオでは高い競争力を維持している。
- 参考スコア(独自算出の注目度): 18.278508401516426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing 3D face modeling methods usually depend on 3D Morphable Models, which inherently constrain the representation capacity to fixed shape priors. Optimization-based approaches offer high-quality reconstructions but tend to be computationally expensive. In this work, we introduce GLVD, a hybrid method for 3D face reconstruction from few-shot images that extends Learned Vertex Descent (LVD) by integrating per-vertex neural field optimization with global structural guidance from dynamically predicted 3D keypoints. By incorporating relative spatial encoding, GLVD iteratively refines mesh vertices without requiring dense 3D supervision. This enables expressive and adaptable geometry reconstruction while maintaining computational efficiency. GLVD achieves state-of-the-art performance in single-view settings and remains highly competitive in multi-view scenarios, all while substantially reducing inference time.
- Abstract(参考訳): 既存の3D顔モデリング手法は、通常3Dモーフィブルモデルに依存しており、これは本質的に、表現能力を固定形状の先行に制限するものである。
最適化ベースのアプローチは高品質な再構築を提供するが、計算コストが高い傾向がある。
本研究では,Learned Vertex Descent (LVD) を拡張した少数ショット画像からの3次元顔再構成手法であるGLVDを紹介する。
相対的な空間符号化を取り入れることで、GLVDは密集した3Dの監督を必要とせず、メッシュ頂点を反復的に洗練する。
これにより、計算効率を維持しつつ、表現的かつ適応的な幾何再構成が可能となる。
GLVDはシングルビュー設定で最先端のパフォーマンスを実現し、マルチビューシナリオでは高い競争力を維持しながら、推論時間を大幅に短縮する。
関連論文リスト
- SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape Modeling [79.56581753856452]
SparseFlexは、新しいスパース構造のアイソサーフェス表現で、レンダリング損失から最大10243ドルの解像度で、差別化可能なメッシュ再構築を可能にする。
SparseFlexは、高解像度で差別化可能なメッシュ再構成とレンダリングロスによる生成を可能にすることで、3D形状の表現とモデリングの最先端性を著しく向上させる。
論文 参考訳(メタデータ) (2025-03-27T17:46:42Z) - HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
モノクロ画像から手持ちの物体を3Dで再構成することは、コンピュータビジョンにおいて重要な課題である。
ハンドヘルドオブジェクトの高密度な3次元点群を効率的に再構成するトランスフォーマーモデルを提案する。
提案手法は,高速な推測速度で最先端の精度を達成し,画像の幅を最適化する。
論文 参考訳(メタデータ) (2025-03-27T09:45:09Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
高品質な再構成のための神経信号距離場(SDF)とプリミティブを結合する新しい手法であるMonoGSDFを紹介する。
任意のスケールのシーンを扱うために,ロバストな一般化のためのスケーリング戦略を提案する。
実世界のデータセットの実験は、効率を保ちながら、以前の方法よりも優れています。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance Field [5.573454319150408]
四面体グリッド上での3次元形状特性を推定するために,明示的なSDFフィールドと浅いカラーネットワークを組み合わせた体積最適化フレームワークを提案する。
Chamfer統計による実験結果は、オブジェクト、オープンシーン、人間などの様々なシナリオにおいて、前例のない復元品質でこのアプローチを検証する。
論文 参考訳(メタデータ) (2024-07-29T09:46:39Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - TriPlaneNet: An Encoder for EG3D Inversion [1.9567015559455132]
NeRFをベースとしたGANは、人間の頭部の高分解能かつ高忠実な生成モデリングのための多くのアプローチを導入している。
2D GANインバージョンのための普遍的最適化に基づく手法の成功にもかかわらず、3D GANに適用された手法は、結果を新しい視点に外挿することができないかもしれない。
本稿では,EG3D生成モデルに提示された3面表現を直接利用することにより,両者のギャップを埋める高速な手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:56:20Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
画像やスキャンに適合する3次元人体モデルのための新しい最適化手法を提案する。
われわれのアプローチは、非常に異なる体型を持つ服を着た人々の基盤となる身体を捉えることができ、最先端技術と比べて大きな改善を達成できる。
LVDはまた、人間と手の3次元モデル適合にも適用でき、よりシンプルで高速な方法でSOTAに大きな改善が示される。
論文 参考訳(メタデータ) (2022-05-12T17:55:51Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
表面形状を暗黙的に表現する最近の学習手法は、多視点3次元再構成の問題において顕著な結果を示している。
我々はこれらの制限を,数発のフル3次元頭部再構成の特定の問題に対処する。
暗黙の表現を用いて,数千個の不完全な生スキャンから3次元頭部形状モデルを学習する。
論文 参考訳(メタデータ) (2021-07-26T23:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。