論文の概要: ShapeGen4D: Towards High Quality 4D Shape Generation from Videos
- arxiv url: http://arxiv.org/abs/2510.06208v1
- Date: Tue, 07 Oct 2025 17:58:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:08.41186
- Title: ShapeGen4D: Towards High Quality 4D Shape Generation from Videos
- Title(参考訳): ShapeGen4D:ビデオから高品質な4D形状を作り出す
- Authors: Jiraphon Yenphraphai, Ashkan Mirzaei, Jianqi Chen, Jiaxu Zou, Sergey Tulyakov, Raymond A. Yeh, Peter Wonka, Chaoyang Wang,
- Abstract要約: ビデオからエンドツーエンドに1つの動的3次元表現を合成する,ネイティブなビデオから4次元の形状生成フレームワークを提案する。
本手法は,フレームごとの最適化を行なわずに,非剛性運動,体積変化,および位相遷移を正確にキャプチャする。
- 参考スコア(独自算出の注目度): 85.45517487721257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video-conditioned 4D shape generation aims to recover time-varying 3D geometry and view-consistent appearance directly from an input video. In this work, we introduce a native video-to-4D shape generation framework that synthesizes a single dynamic 3D representation end-to-end from the video. Our framework introduces three key components based on large-scale pre-trained 3D models: (i) a temporal attention that conditions generation on all frames while producing a time-indexed dynamic representation; (ii) a time-aware point sampling and 4D latent anchoring that promote temporally consistent geometry and texture; and (iii) noise sharing across frames to enhance temporal stability. Our method accurately captures non-rigid motion, volume changes, and even topological transitions without per-frame optimization. Across diverse in-the-wild videos, our method improves robustness and perceptual fidelity and reduces failure modes compared with the baselines.
- Abstract(参考訳): ビデオ条件付き4D形状生成は、入力ビデオから直接、時間変化した3D形状とビュー一貫性の外観を復元することを目的としている。
本研究では,ビデオからエンドツーエンドに1つの動的3次元表現を合成する,ネイティブなビデオから4次元の形状生成フレームワークを提案する。
我々のフレームワークは,大規模事前学習型3Dモデルに基づく3つの重要なコンポーネントを導入している。
一 時差動的表現を生成しつつ、すべてのフレームに条件を付ける時間的注意
(二 時間的一貫した幾何及びテクスチャを促進する時間的認識点サンプリング及び四次元潜伏アンカー
三 時間的安定性を高めるため、フレーム間でのノイズ共有。
本手法は,フレーム単位の最適化を伴わずに,非剛性運動,体積変化,および位相遷移さえ正確にキャプチャする。
本手法は,多種多様な動画に対して,ロバスト性や知覚的忠実度を向上し,ベースラインに比べて障害モードを低減させる。
関連論文リスト
- 4D Driving Scene Generation With Stereo Forcing [62.47705572424127]
現在の生成モデルは、時間外挿と空間的新規ビュー合成(NVS)をシーンごとの最適化なしで同時にサポートする動的4D駆動シーンの合成に苦慮している。
PhiGenesisは、幾何学的・時間的整合性を持った映像生成技術を拡張する4次元シーン生成のための統合フレームワークである。
論文 参考訳(メタデータ) (2025-09-24T15:37:17Z) - In-2-4D: Inbetweening from Two Single-View Images to 4D Generation [63.68181731564576]
Inbetween-2-4Dという,2枚のシングルビュー画像を補間する4次元(つまり3D + モーション)の生成問題を提案する。
テキストや1つの画像のみからの映像/4D生成とは対照的に、補間タスクはより正確なモーション制御を利用して生成をよりよく制約することができる。
論文 参考訳(メタデータ) (2025-04-11T09:01:09Z) - Video4DGen: Enhancing Video and 4D Generation through Mutual Optimization [31.956858341885436]
Video4DGenは、単一または複数の生成されたビデオから4D表現を生成するのに優れている新しいフレームワークである。
Video4DGenは、仮想現実、アニメーションなどにおけるアプリケーションのための強力なツールを提供する。
論文 参考訳(メタデータ) (2025-04-05T12:13:05Z) - Free4D: Tuning-free 4D Scene Generation with Spatial-Temporal Consistency [49.875459658889355]
Free4Dは、単一の画像から4Dシーンを生成するためのチューニング不要のフレームワークである。
我々の重要な洞察は、一貫した4次元シーン表現のために、事前訓練された基礎モデルを蒸留することである。
結果の4D表現はリアルタイムで制御可能なレンダリングを可能にする。
論文 参考訳(メタデータ) (2025-03-26T17:59:44Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
高速でスケーラブルな4Dコンテンツ生成のための新しいフレームワーク textbfDiffusion4D を提案する。
ダイナミックな3Dアセットの軌道ビューを合成できる4D対応ビデオ拡散モデルを開発した。
提案手法は, 生成効率と4次元幾何整合性の観点から, 従来の最先端技術を超えている。
論文 参考訳(メタデータ) (2024-05-26T17:47:34Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
textbf4DGenは、4Dコンテンツ作成のための新しいフレームワークである。
我々のパイプラインは、制御可能な4D生成を容易にし、ユーザがモノクロビデオで動きを指定したり、画像から映像への世代を適用できる。
既存のビデオから4Dのベースラインと比較すると,入力信号の忠実な再構成には優れた結果が得られる。
論文 参考訳(メタデータ) (2023-12-28T18:53:39Z) - Consistent4D: Consistent 360{\deg} Dynamic Object Generation from
Monocular Video [15.621374353364468]
Consistent4Dは、モノクロビデオから4D動的オブジェクトを生成するための新しいアプローチである。
我々は、360度ダイナミックオブジェクト再構成を4次元生成問題として、退屈なマルチビューデータ収集とカメラキャリブレーションの必要性を排除した。
論文 参考訳(メタデータ) (2023-11-06T03:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。