論文の概要: Uncertainty Quantification In Surface Landmines and UXO Classification Using MC Dropout
- arxiv url: http://arxiv.org/abs/2510.06238v1
- Date: Fri, 03 Oct 2025 03:01:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.044303
- Title: Uncertainty Quantification In Surface Landmines and UXO Classification Using MC Dropout
- Title(参考訳): 表面地雷の不確かさの定量化とMCドロップアウトを用いたUXO分類
- Authors: Sagar Lekhak, Emmett J. Ientilucci, Dimah Dera, Susmita Ghosh,
- Abstract要約: 本研究では,表面地雷およびUXO分類のための微調整されたResNet-50アーキテクチャに統合されたモンテカルロ・ドロップアウト(MC)による不確実性定量化の考え方を紹介する。
クリーンで逆向きに摂動し、ノイズの多いテスト画像に対する実験結果は、モデルが困難な条件下で信頼できない予測をフラグする能力を示している。
- 参考スコア(独自算出の注目度): 1.3999481573773072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting surface landmines and unexploded ordnances (UXOs) using deep learning has shown promise in humanitarian demining. However, deterministic neural networks can be vulnerable to noisy conditions and adversarial attacks, leading to missed detection or misclassification. This study introduces the idea of uncertainty quantification through Monte Carlo (MC) Dropout, integrated into a fine-tuned ResNet-50 architecture for surface landmine and UXO classification, which was tested on a simulated dataset. Integrating the MC Dropout approach helps quantify epistemic uncertainty, providing an additional metric for prediction reliability, which could be helpful to make more informed decisions in demining operations. Experimental results on clean, adversarially perturbed, and noisy test images demonstrate the model's ability to flag unreliable predictions under challenging conditions. This proof-of-concept study highlights the need for uncertainty quantification in demining, raises awareness about the vulnerability of existing neural networks in demining to adversarial threats, and emphasizes the importance of developing more robust and reliable models for practical applications.
- Abstract(参考訳): 深層学習を用いた地表面地雷や未露地雷(UXOs)の検出は人道的な採鉱の可能性を示唆している。
しかし、決定論的ニューラルネットワークはノイズのある条件や敵の攻撃に弱いため、検出や誤分類を見逃す可能性がある。
本研究では,モンテカルロ(MC)ドロップアウトによる不確実性定量化のアイデアを,シミュレーションデータセットを用いて検証した表面地雷およびUXO分類のための微調整されたResNet-50アーキテクチャに統合した。
MCのDropoutアプローチの統合は、てんかんの不確実性の定量化に役立ち、予測信頼性のさらなる指標を提供する。
クリーンで逆向きに摂動し、ノイズの多いテスト画像に対する実験結果は、モデルが困難な条件下で信頼できない予測をフラグする能力を示している。
この概念実証研究は、マイニングにおける不確実性定量化の必要性を強調し、敵の脅威を抑えるための既存のニューラルネットワークの脆弱性に対する認識を高め、実用アプリケーションのためのより堅牢で信頼性の高いモデルを開発することの重要性を強調している。
関連論文リスト
- Low-Order Flow Reconstruction and Uncertainty Quantification in Disturbed Aerodynamics Using Sparse Pressure Measurements [0.0]
本稿では,低次グステンカウンタ流場と昇降係数をスパース・ノイズ表面圧力測定から再構成する新しい機械学習フレームワークを提案する。
本研究では,センサのガス-空気相互作用に対する応答の時間変化を徹底的に検討し,センサ配置に関する貴重な知見を明らかにする。
論文 参考訳(メタデータ) (2025-01-06T22:02:06Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
Detectors [8.029049649310213]
本稿では,新しい勾配に基づく不確実性指標を導入し,異なる物体検出アーキテクチャについて検討する。
実験では、真の肯定的/偽の正の判別と、結合上の交叉の予測において顕著な改善が示された。
また,モンテカルロのドロップアウト不確実性指標に対する改善や,さまざまな不確実性指標のソースを集約することで,さらなる大幅な向上が期待できる。
論文 参考訳(メタデータ) (2021-07-09T16:04:11Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
ベイジアン深層学習モデルが従来のニューラルネットワークよりわずかに優れていることを示す。
予備的な調査は、初期化、アーキテクチャ、アクティベーション関数の選択によるバイアスの潜在的固有の役割を示している。
論文 参考訳(メタデータ) (2020-09-03T16:58:15Z) - Model Uncertainty Quantification for Reliable Deep Vision Structural
Health Monitoring [2.5126058470073263]
本稿では,深部視覚構造型健康モニタリングモデルに対するベイズ推定を提案する。
不確かさはモンテカルロのドロップアウトサンプリングを用いて定量化することができる。
き裂, 局部損傷同定, 橋梁部品検出の3つの独立したケーススタディについて検討した。
論文 参考訳(メタデータ) (2020-04-10T17:54:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。