論文の概要: A Total Variation Regularized Framework for Epilepsy-Related MRI Image Segmentation
- arxiv url: http://arxiv.org/abs/2510.06276v1
- Date: Mon, 06 Oct 2025 18:07:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.08814
- Title: A Total Variation Regularized Framework for Epilepsy-Related MRI Image Segmentation
- Title(参考訳): てんかん関連MRI画像分割のための全変分正規化フレームワーク
- Authors: Mehdi Rabiee, Sergio Greco, Reza Shahbazian, Irina Trubitsyna,
- Abstract要約: FCD ( Focal Cortical Dysplasia) は薬剤性てんかんの原因の一つである。
脳磁気共鳴画像(MRI)では、その病変の微妙で小さな性質のため、FCDは検出が難しい。
本稿では3次元脳MRI画像におけるFCD領域分割のための新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 13.43616910092363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Focal Cortical Dysplasia (FCD) is a primary cause of drug-resistant epilepsy and is difficult to detect in brain {magnetic resonance imaging} (MRI) due to the subtle and small-scale nature of its lesions. Accurate segmentation of FCD regions in 3D multimodal brain MRI images is essential for effective surgical planning and treatment. However, this task remains highly challenging due to the limited availability of annotated FCD datasets, the extremely small size and weak contrast of FCD lesions, the complexity of handling 3D multimodal inputs, and the need for output smoothness and anatomical consistency, which is often not addressed by standard voxel-wise loss functions. This paper presents a new framework for segmenting FCD regions in 3D brain MRI images. We adopt state-of-the-art transformer-enhanced encoder-decoder architecture and introduce a novel loss function combining Dice loss with an anisotropic {Total Variation} (TV) term. This integration encourages spatial smoothness and reduces false positive clusters without relying on post-processing. The framework is evaluated on a public FCD dataset with 85 epilepsy patients and demonstrates superior segmentation accuracy and consistency compared to standard loss formulations. The model with the proposed TV loss shows an 11.9\% improvement on the Dice coefficient and 13.3\% higher precision over the baseline model. Moreover, the number of false positive clusters is reduced by 61.6%
- Abstract(参考訳): FCD(Focical Cortical Dysplasia)は薬剤抵抗性てんかんの主要な原因であり、病変の微妙で小さな性質のため、脳のMRI(MRI)では検出が困難である。
3次元マルチモーダル脳MRI画像におけるFCD領域の正確なセグメンテーションは、効果的な手術計画と治療に不可欠である。
しかし、この課題は、注釈付きFCDデータセットの可用性の制限、FCD病変の極めて小さいサイズと弱いコントラスト、三次元マルチモーダル入力の処理の複雑さ、出力の滑らかさと解剖学的整合性など、標準的なボクセルワイド・ロス関数では扱えないことが多いため、非常に困難なままである。
本稿では3次元脳MRI画像におけるFCD領域分割のための新しい枠組みを提案する。
我々は、最先端のトランスフォーマー拡張エンコーダデコーダアーキテクチャを採用し、Dice損失と異方性 {Total Variation} (TV) 項を組み合わせた新しい損失関数を導入する。
この統合は空間的滑らかさを促進し、後処理に頼ることなく偽陽性クラスタを減らす。
このフレームワークは85人のてんかん患者を有する公共FCDデータセットで評価され、標準的な損失定式化よりもセグメンテーション精度と一貫性が優れている。
提案したテレビ損失モデルでは,Dice係数が1.9\%,ベースラインモデルが13.3\%向上した。
さらに、偽陽性クラスターの数は61.6%減少する
関連論文リスト
- SUFFICIENT: A scan-specific unsupervised deep learning framework for high-resolution 3D isotropic fetal brain MRI reconstruction [7.268308489093152]
等方性HR容積再構成のための教師なし反復SVR-SRRフレームワークを提案する。
高分解能(HR)ボリュームを生成するために、ディープイメージ事前フレームワーク内に埋め込まれたデコードネットワークを包括的画像劣化モデルに組み込む。
大規模動乱シミュレーションデータと臨床データを用いて行った実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2025-05-23T04:53:59Z) - ZECO: ZeroFusion Guided 3D MRI Conditional Generation [11.645873358288648]
ZECOはZeroFusionでガイドされた3D MRI条件生成フレームワークである。
対応する3Dセグメンテーションマスクを備えた高忠実度MRI画像の抽出、圧縮、生成を行う。
ZECOは、脳MRIデータセットの定量的および質的な評価において、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2025-03-24T00:04:52Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data [19.085329423308938]
CycleINRは、3次元医療データの超高解像度化のための新しい拡張インプリシトニューラルネットワーク表現モデルである。
そこで我々は,Slice-wise Noise Level Inconsistency (SNLI) を新たに導入し,Slice-wise noise Level inconsistency (SNLI) を定量的に評価する。
論文 参考訳(メタデータ) (2024-04-07T08:48:01Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z) - Fully Automated 3D Segmentation of MR-Imaged Calf Muscle Compartments:
Neighborhood Relationship Enhanced Fully Convolutional Network [6.597152960878372]
FilterNetは新しい完全畳み込みネットワーク(FCN)であり、個々のふくらはぎの筋肉の区画分割にエッジ対応の制約を埋め込む。
FCNは健常者10名, 疾患者30名のT1強調MRI像を4倍のクロスバリデーションで評価した。
論文 参考訳(メタデータ) (2020-06-21T22:53:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。