論文の概要: Function regression using the forward forward training and inferring paradigm
- arxiv url: http://arxiv.org/abs/2510.06762v1
- Date: Wed, 08 Oct 2025 08:41:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.37084
- Title: Function regression using the forward forward training and inferring paradigm
- Title(参考訳): フォワードフォワードトレーニングと推論パラダイムを用いた関数回帰
- Authors: Shivam Padmani, Akshay Joshi,
- Abstract要約: フォワードフォワード学習アルゴリズムは、バックプロパゲーションなしでニューラルネットワークをトレーニングするための新しいアプローチである。
本稿では,Forward-Forwardアルゴリズムを用いて関数の近似(関数回帰)を行う手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Function regression/approximation is a fundamental application of machine learning. Neural networks (NNs) can be easily trained for function regression using a sufficient number of neurons and epochs. The forward-forward learning algorithm is a novel approach for training neural networks without backpropagation, and is well suited for implementation in neuromorphic computing and physical analogs for neural networks. To the best of the authors' knowledge, the Forward Forward paradigm of training and inferencing NNs is currently only restricted to classification tasks. This paper introduces a new methodology for approximating functions (function regression) using the Forward-Forward algorithm. Furthermore, the paper evaluates the developed methodology on univariate and multivariate functions, and provides preliminary studies of extending the proposed Forward-Forward regression to Kolmogorov Arnold Networks, and Deep Physical Neural Networks.
- Abstract(参考訳): 関数回帰/近似は機械学習の基本的な応用である。
ニューラルネットワーク(NN)は、十分な数のニューロンとエポックを使用して、機能回帰のために容易に訓練することができる。
フォワードフォワード学習アルゴリズムは、バックプロパゲーションなしでニューラルネットワークをトレーニングするための新しいアプローチであり、ニューロモルフィックコンピューティングやニューラルネットワークの物理アナログの実装に適している。
著者の知識を最大限に活用するために、トレーニングとNNの推論のフォワードフォワードパラダイムは、現在、分類タスクに限られている。
本稿では,Forward-Forwardアルゴリズムを用いて関数の近似(関数回帰)を行う手法を提案する。
さらに,一変量関数と多変量関数の手法について検討し,提案手法をKolmogorov Arnold NetworksとDeep Physical Neural Networksに拡張するための予備的検討を行った。
関連論文リスト
- Continual Learning via Sequential Function-Space Variational Inference [65.96686740015902]
連続学習を逐次関数空間変動推論として定式化した目的を提案する。
ニューラルネットワークの予測を直接正規化する目的と比較して、提案した目的はより柔軟な変動分布を可能にする。
タスクシーケンスの範囲で、逐次関数空間変動推論によってトレーニングされたニューラルネットワークは、関連する手法でトレーニングされたネットワークよりも予測精度が良いことを実証した。
論文 参考訳(メタデータ) (2023-12-28T18:44:32Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
レイヤワイドフィードバックフィードバック(LFP)は、ニューラルネットワークのような予測器のための新しいトレーニング原則である。
LFPはそれぞれの貢献に基づいて個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分と有害な部分の弱体化を両立させる手法である。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Using Linear Regression for Iteratively Training Neural Networks [4.873362301533824]
ニューラルネットワークの重みとバイアスを学習するための単純な線形回帰に基づくアプローチを提案する。
このアプローチは、より大きく、より複雑なアーキテクチャに向けられている。
論文 参考訳(メタデータ) (2023-07-11T11:53:25Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Global quantitative robustness of regression feed-forward neural
networks [0.0]
我々は回帰分解点の概念を回帰ニューラルネットワークに適用する。
我々は、故障率のプロキシにより、サンプル外損失によって測定された性能を比較した。
この結果は、ニューラルネットワークのトレーニングにロバストな損失関数を使うことを動機付けている。
論文 参考訳(メタデータ) (2022-11-18T09:57:53Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Self-adaptive deep neural network: Numerical approximation to functions
and PDEs [3.6525914200522656]
与えられたタスクに対して最適なディープニューラルネットワークを設計するための自己適応アルゴリズムを提案する。
ANE法は、フォームトレイン、推定、拡張のループとして記述される。
ANE法は, 急激な遷移層を示す関数を学習するために, ほぼ最小限のNNを自動設計できることを実証した。
論文 参考訳(メタデータ) (2021-09-07T03:16:57Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
本稿では,測定誤差モデルの推定に有効なニューラルネットワーク設計を提案する。
完全に接続されたフィードフォワードニューラルネットワークを用いて回帰関数を$f(x)$に近似する。
我々は、ニューラルネットワークアプローチと古典的ノンパラメトリック手法を比較するために、広範囲にわたる数値的研究を行っている。
論文 参考訳(メタデータ) (2020-07-15T06:05:37Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。