論文の概要: Concept Retrieval -- What and How?
- arxiv url: http://arxiv.org/abs/2510.07058v1
- Date: Wed, 08 Oct 2025 14:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:20.550591
- Title: Concept Retrieval -- What and How?
- Title(参考訳): Concept Retrieval -- What and How?
- Authors: Ori nizan, Oren Shrout, Ayellet Tal,
- Abstract要約: 概念は具体的あるいは抽象的な概念を反映する可能性がある。入力画像が与えられた場合、本論文は中心概念を共有する他のイメージを検索する。
問題を正式に定義し、主要な要件を概説し、適切な評価指標を導入する。
- 参考スコア(独自算出の注目度): 15.637530031275604
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A concept may reflect either a concrete or abstract idea. Given an input image, this paper seeks to retrieve other images that share its central concepts, capturing aspects of the underlying narrative. This goes beyond conventional retrieval or clustering methods, which emphasize visual or semantic similarity. We formally define the problem, outline key requirements, and introduce appropriate evaluation metrics. We propose a novel approach grounded in two key observations: (1) While each neighbor in the embedding space typically shares at least one concept with the query, not all neighbors necessarily share the same concept with one another. (2) Modeling this neighborhood with a bimodal Gaussian distribution uncovers meaningful structure that facilitates concept identification. Qualitative, quantitative, and human evaluations confirm the effectiveness of our approach. See the package on PyPI: https://pypi.org/project/coret/
- Abstract(参考訳): 概念は具体的あるいは抽象的な概念を反映することができる。
入力画像が与えられた場合,本論文は,その中心となる概念を共有する他のイメージを検索し,基礎となる物語の側面を捉えようとする。
これは、視覚的または意味的な類似性を強調する、従来の検索やクラスタリングの方法を越えている。
問題を正式に定義し、主要な要件を概説し、適切な評価指標を導入する。
1)埋め込み空間内の各隣人は、通常、少なくとも1つの概念をクエリと共有するが、すべての隣人は必ずしも同じ概念を互いに共有するわけではない。
2) この近傍をバイモーダルガウス分布でモデル化すると,概念同定を容易にする有意義な構造が明らかになる。
質的,定量的,人的評価により,本手法の有効性が確認された。
PyPI のパッケージ https://pypi.org/project/coret/
関連論文リスト
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency [2.7719338074999547]
解釈可能性が最重要である領域において、概念ボトルネックモデル(CBM)が重要なツールとして出現している。
本研究では、アンダーラインtextbfReinforcecing Interpretability and Transparency に対するアンダーラインtextbfEmbedding UnderlinetextbfApproximations によるアンダーラインtextbfConceptual UnderlinetextbfLbeddingを提案する。
論文 参考訳(メタデータ) (2024-06-13T06:04:34Z) - A Geometric Notion of Causal Probing [85.49839090913515]
線形部分空間仮説は、言語モデルの表現空間において、動詞数のような概念に関するすべての情報が線形部分空間に符号化されていることを述べる。
理想線型概念部分空間を特徴づける内在的基準のセットを与える。
2つの言語モデルにまたがる少なくとも1つの概念に対して、この概念のサブスペースは、生成された単語の概念値を精度良く操作することができる。
論文 参考訳(メタデータ) (2023-07-27T17:57:57Z) - Concept2Box: Joint Geometric Embeddings for Learning Two-View Knowledge
Graphs [77.10299848546717]
Concept2Boxは、KGの2つのビューを共同で埋め込む新しいアプローチである。
ボックス埋め込みは、それら間の重複や解離のような階層構造と複雑な関係を学習する。
本稿では,新しいベクトル-ボックス間距離測定法を提案し,両者の埋め込みを共同で学習する。
論文 参考訳(メタデータ) (2023-07-04T21:37:39Z) - Learnable Pillar-based Re-ranking for Image-Text Retrieval [119.9979224297237]
画像テキスト検索は、モダリティギャップを埋め、意味的類似性に基づいてモダリティコンテンツを検索することを目的としている。
一般的なポストプロセッシング手法であるリグレードは, 単一モダリティ検索タスクにおいて, 隣り合う関係を捕捉する優位性を明らかにしている。
本稿では,画像テキスト検索のための新しい学習可能な柱型リグレードパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-25T04:33:27Z) - CRAFT: Concept Recursive Activation FacTorization for Explainability [5.306341151551106]
CRAFTは概念に基づく説明を生成することによって、"What"と"where"の両方を識別する新しいアプローチである。
提案手法の利点を実証するために,人間とコンピュータの視覚実験を行った。
論文 参考訳(メタデータ) (2022-11-17T14:22:47Z) - When are Post-hoc Conceptual Explanations Identifiable? [18.85180188353977]
人間の概念ラベルが利用できない場合、概念発見手法は解釈可能な概念のための訓練された埋め込み空間を探索する。
我々は、概念発見は特定可能であり、多くの既知の概念を確実に回収し、説明の信頼性を保証するべきであると論じている。
本結果は,人間ラベルのない信頼性の高い概念発見を保証できる厳密な条件を強調した。
論文 参考訳(メタデータ) (2022-06-28T10:21:17Z) - Sparse Subspace Clustering for Concept Discovery (SSCCD) [1.7319807100654885]
概念は高いレベルの人間の理解の鍵となる構成要素である。
局所帰属法では、サンプル間のコヒーレントモデル挙動を特定できない。
隠れた特徴層の低次元部分空間として、新しい概念の定義を提唱した。
論文 参考訳(メタデータ) (2022-03-11T16:15:48Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。