論文の概要: Comparison of Fully Homomorphic Encryption and Garbled Circuit Techniques in Privacy-Preserving Machine Learning Inference
- arxiv url: http://arxiv.org/abs/2510.07457v1
- Date: Wed, 08 Oct 2025 19:03:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.679523
- Title: Comparison of Fully Homomorphic Encryption and Garbled Circuit Techniques in Privacy-Preserving Machine Learning Inference
- Title(参考訳): プライバシ保護機械学習推論における完全同型暗号化とガブリッド回路技術の比較
- Authors: Kalyan Cheerla, Lotfi Ben Othmane, Kirill Morozov,
- Abstract要約: 本研究は、セキュアニューラルネットワーク推論のためのFHE(Fully Homomorphic Encryption)とGC(Garbled Circuits)の比較評価を行う。
2層ニューラルネットワーク(NN)は、Microsoft SEALライブラリ(FHE)のCKKSスキームとIntelLabsのTinyGarble2.0フレームワーク(GC)を使用して実装された。
モジュラGCは高速な実行とメモリ消費の削減を提供する一方、FHEは非インタラクティブ推論をサポートしている。
- 参考スコア(独自算出の注目度): 0.30586855806896035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) is making its way into fields such as healthcare, finance, and Natural Language Processing (NLP), and concerns over data privacy and model confidentiality continue to grow. Privacy-preserving Machine Learning (PPML) addresses this challenge by enabling inference on private data without revealing sensitive inputs or proprietary models. Leveraging Secure Computation techniques from Cryptography, two widely studied approaches in this domain are Fully Homomorphic Encryption (FHE) and Garbled Circuits (GC). This work presents a comparative evaluation of FHE and GC for secure neural network inference. A two-layer neural network (NN) was implemented using the CKKS scheme from the Microsoft SEAL library (FHE) and the TinyGarble2.0 framework (GC) by IntelLabs. Both implementations are evaluated under the semi-honest threat model, measuring inference output error, round-trip time, peak memory usage, communication overhead, and communication rounds. Results reveal a trade-off: modular GC offers faster execution and lower memory consumption, while FHE supports non-interactive inference.
- Abstract(参考訳): マシンラーニング(ML)は、医療、金融、自然言語処理(NLP)といった分野に進出し、データのプライバシとモデルの機密性に関する懸念が高まり続けている。
プライバシ保護機械学習(PPML)は、機密性の高い入力やプロプライエタリなモデルを明らかにすることなく、プライベートデータの推論を可能にすることで、この問題に対処する。
この領域で広く研究されている2つのアプローチは、FHE(Fully Homomorphic Encryption)とGC(Garbled Circuits)である。
本研究は、セキュアニューラルネットワーク推論のためのFHEとGCの比較評価を行う。
2層ニューラルネットワーク(NN)は、Microsoft SEALライブラリ(FHE)のCKKSスキームとIntelLabsのTinyGarble2.0フレームワーク(GC)を使用して実装された。
両実装は、予測出力誤差、ラウンドトリップ時間、ピークメモリ使用量、通信オーバーヘッド、通信ラウンドなど、半正直な脅威モデルで評価される。
モジュラGCは高速な実行とメモリ消費の削減を提供する一方、FHEは非インタラクティブ推論をサポートしている。
関連論文リスト
- HE-LRM: Encrypted Deep Learning Recommendation Models using Fully Homomorphic Encryption [3.0841649700901117]
FHE(Fully Homomorphic Encryption)は、データを暗号化するだけでなく、暗号化されたデータに直接計算を適用することができる暗号化方式である。
本稿では,FHEを深層学習勧告モデル(DLRM)に適用する際の課題と機会について考察する。
本研究では,FHE計算コストを低減し,基礎となるモデル性能を維持しつつ,圧縮埋込みルックアップを実行する新しい手法を開発した。
論文 参考訳(メタデータ) (2025-06-22T19:40:04Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
本稿では,機械学習アルゴリズムの新たな2つの応用法を提案する。
これらのアルゴリズムは、監査設定で容易に適用でき、暗号システムの堅牢性を評価することができる。
本稿では,DES,RSA,AES ECBなど,IND-CPAの安全でない暗号化スキームを高精度に識別する。
論文 参考訳(メタデータ) (2025-01-25T04:53:36Z) - Communication-Efficient and Privacy-Adaptable Mechanism for Federated Learning [54.20871516148981]
通信効率・プライバシー適応メカニズム(CEPAM)について紹介する。
CEPAMは通信効率とプライバシー保護を同時に達成する。
我々は、CEPAMのプライバシー保証を理論的に分析し、CEPAMのユーザプライバシと正確性の間のトレードオフを調査する。
論文 参考訳(メタデータ) (2025-01-21T11:16:05Z) - Targeted Visualization of the Backbone of Encoder LLMs [46.453758431767724]
注意に基づく大規模言語モデル(LLMs)は、自然言語処理(NLP)における最先端技術である。
エンコーダモデルの成功にもかかわらず、私たちはこの作業に集中していますが、バイアスの問題や敵の攻撃に対する感受性など、いくつかのリスクも抱えています。
決定関数の一部を2次元のデータセットとともに視覚化するDeepViewのNLPドメインへの応用について検討する。
論文 参考訳(メタデータ) (2024-03-26T12:51:02Z) - Effect of Homomorphic Encryption on the Performance of Training
Federated Learning Generative Adversarial Networks [10.030986278376567]
GAN(Generative Adversarial Network)は、機械学習(ML)分野におけるディープラーニング生成モデルである。
医学などの特定の分野において、トレーニングデータは、異なる病院にまたがって保存される病院患者の記録である可能性がある。
本稿では,3種類のホモモルフィック暗号を用いたFL-GANの学習性能の低下に着目した。
論文 参考訳(メタデータ) (2022-07-01T08:35:10Z) - TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption [0.0]
モノモルフィック暗号化を用いたプライバシー保護機械学習のためのオープンソースライブラリTenSEALを紹介します。
我々は,半メガバイト以下の通信を用いて,暗号化畳み込みニューラルネットワークを1秒以内で評価可能であることを示す。
論文 参考訳(メタデータ) (2021-04-07T14:32:38Z) - Efficient CNN Building Blocks for Encrypted Data [6.955451042536852]
ホモモルフィック暗号化(FHE)は機械学習と推論を可能にする有望な技術である。
選択したFHE方式の動作パラメータが機械学習モデルの設計に大きな影響を与えることを示す。
実験により, 上記の設計パラメータの選択は, 精度, セキュリティレベル, 計算時間の間に大きなトレードオフをもたらすことがわかった。
論文 参考訳(メタデータ) (2021-01-30T21:47:23Z) - Cryptotree: fast and accurate predictions on encrypted structured data [0.0]
ホモモルフィック暗号化(HE)は、入力と出力の両方が暗号化される暗号化データ上での計算を可能にする能力で認められている。
線形回帰と比較して非常に強力な学習手法であるランダムフォレスト(RF)の利用を可能にするフレームワークであるCryptotreeを提案する。
論文 参考訳(メタデータ) (2020-06-15T11:48:01Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
フェデレートラーニング(FL)は、データを有用なモデルにトレーニングしながら、モバイル端末(MT)からプライベートデータを保存することができる。
情報理論の観点からは、MTがアップロードした共有モデルから、好奇心の強いサーバがプライベートな情報を推測することが可能である。
サーバにアップロードする前に、共有モデルに人工ノイズを加えることで、ユーザレベルの差分プライバシー(UDP)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-29T10:13:39Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。