論文の概要: Curriculum Learning with Synthetic Data for Enhanced Pulmonary Nodule Detection in Chest Radiographs
- arxiv url: http://arxiv.org/abs/2510.07681v1
- Date: Thu, 09 Oct 2025 02:06:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.809717
- Title: Curriculum Learning with Synthetic Data for Enhanced Pulmonary Nodule Detection in Chest Radiographs
- Title(参考訳): 胸部X線写真における肺結節検出のための合成データを用いたカリキュラム学習
- Authors: Pranav Sambhu, Om Guin, Madhav Sambhu, Jinho Cha,
- Abstract要約: 本研究は, カリキュラム学習と総合的拡張を統合することで, 難治性肺結節の検出が促進されるかどうかを検証した。
FPN(Feature Pyramid Network)バックボーンを備えた高速なR-CNNは、ハイブリッドデータセットでトレーニングされた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study evaluates whether integrating curriculum learning with diffusion-based synthetic augmentation can enhance the detection of difficult pulmonary nodules in chest radiographs, particularly those with low size, brightness, and contrast, which often challenge conventional AI models due to data imbalance and limited annotation. A Faster R-CNN with a Feature Pyramid Network (FPN) backbone was trained on a hybrid dataset comprising expert-labeled NODE21 (1,213 patients; 52.4 percent male; mean age 63.2 +/- 11.5 years), VinDr-CXR, CheXpert, and 11,206 DDPM-generated synthetic images. Difficulty scores based on size, brightness, and contrast guided curriculum learning. Performance was compared to a non-curriculum baseline using mean average precision (mAP), Dice score, and area under the curve (AUC). Statistical tests included bootstrapped confidence intervals, DeLong tests, and paired t-tests. The curriculum model achieved a mean AUC of 0.95 versus 0.89 for the baseline (p < 0.001), with improvements in sensitivity (70 percent vs. 48 percent) and accuracy (82 percent vs. 70 percent). Stratified analysis demonstrated consistent gains across all difficulty bins (Easy to Very Hard). Grad-CAM visualizations confirmed more anatomically focused attention under curriculum learning. These results suggest that curriculum-guided synthetic augmentation enhances model robustness and generalization for pulmonary nodule detection.
- Abstract(参考訳): 本研究は, 胸部X線写真, 特に低サイズ, 明度, コントラストの肺結節検出において, データ不均衡やアノテーションの制限により, 従来のAIモデルに挑戦することがしばしばある。
A Faster R-CNN with a Feature Pyramid Network (FPN) backbone were trained on a hybrid dataset with a expert-labeled NODE21 (1,213 patients; 52.4% male; mean age 63.2 +/- 11.5 years), VinDr-CXR, CheXpert, and 11,206 DDPM- generated synthesis images。
サイズ、明るさ、コントラストに基づくカリキュラム学習の困難さ。
平均平均精度 (mAP) , Dice スコア, 曲線下面積 (AUC) を用いた非カリキュラムベースラインと比較した。
統計的テストには、ブートストラップされた信頼区間、DeLongテスト、ペア化されたt-testが含まれる。
カリキュラムモデルは平均AUCが0.95、ベースラインが0.89であり(p < 0.001)、感度(70%対48%)と精度(82パーセント対70%)が向上した。
階層化分析では、すべての難易度ビン (Easy to Very Hard) で一貫した利得を示した。
Grad-CAM視覚化は、カリキュラム学習においてより解剖学的に注意を払っていた。
これらの結果から,カリキュラム誘導型合成拡張は肺結節検出のモデル堅牢性と一般化を促進することが示唆された。
関連論文リスト
- AI-Assisted Pleural Effusion Volume Estimation from Contrast-Enhanced CT Images [0.0]
Pleuralfusions (PE) は多くの異なる臨床疾患でよく見られる疾患である。
CTスキャンで音量を正確に測定することは難しい。
コントラスト強調CTボリュームに基づく半教師付きディープラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2025-10-04T16:06:10Z) - A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer [54.58205672910646]
RenalCLIPは、腎腫瘤の特徴、診断、予後のための視覚言語基盤モデルである。
腎がんの完全な臨床ワークフローにまたがる10のコアタスクにおいて、優れたパフォーマンスと優れた一般化性を実現した。
論文 参考訳(メタデータ) (2025-08-22T17:48:19Z) - Handcrafted vs. Deep Radiomics vs. Fusion vs. Deep Learning: A Comprehensive Review of Machine Learning -Based Cancer Outcome Prediction in PET and SPECT Imaging [2.3507313809321233]
この体系的なレビューは、2020年から2025年にかけて発行された226の研究を分析し、結果予測のためにPETまたはSPECTイメージングに機械学習を適用した。
PETベースの研究は、一般的にSPECTを用いた場合よりも優れており、おそらくは空間分解能と感度が高いためである。
一般的な制限としては、階級不均衡の不十分な扱い、データ不足、人口の多様性の低さがあった。
論文 参考訳(メタデータ) (2025-07-21T21:03:12Z) - Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
本研究は, 肺がん, 特に肺結節の検出を目的とした深層学習モデルと, 胸部X線写真を用いた8つの肺病理組織について検討した。
アンサンブル法とトランスファーラーニングを利用した2段階分類システムを用いて,最初のトリアージ画像を正規あるいは異常に分類する。
このモデルでは、最高の性能の精度は77%、感度は0.713、特異度は0.776、AUCスコアは0.888である。
論文 参考訳(メタデータ) (2024-12-16T11:47:07Z) - Incorporating Anatomical Awareness for Enhanced Generalizability and Progression Prediction in Deep Learning-Based Radiographic Sacroiliitis Detection [0.8248058061511542]
本研究の目的は, 深層学習モデルに解剖学的認識を取り入れることで, 一般化性を高め, 疾患進行の予測を可能にするかを検討することである。
モデルの性能は, 受信機動作特性曲線(AUC)下の領域, 精度, 感度, 特異性を用いて比較した。
論文 参考訳(メタデータ) (2024-05-12T20:02:25Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。