論文の概要: Unsupervised Multi-Source Federated Domain Adaptation under Domain Diversity through Group-Wise Discrepancy Minimization
- arxiv url: http://arxiv.org/abs/2510.08150v1
- Date: Thu, 09 Oct 2025 12:34:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:15.068294
- Title: Unsupervised Multi-Source Federated Domain Adaptation under Domain Diversity through Group-Wise Discrepancy Minimization
- Title(参考訳): グループ単位の差分最小化によるドメインの多様性を考慮した教師なしマルチソースフェデレーションドメイン適応
- Authors: Larissa Reichart, Cem Ata Baykara, Ali Burak Ünal, Mete Akgün, Harlin Lee,
- Abstract要約: Unsupervised Multi-source Domain adapt (UMDA) は、複数の多様なソースドメインからのラベル付きデータを活用することにより、ラベルなしのターゲットドメインに一般化するモデルを学習することを目的としている。
GALAはスケーラブルで堅牢なUMDAフレームワークで、2つの重要なコンポーネントを導入しています。
GALAは、標準ベンチマークの競合や最先端の結果を一貫して達成し、様々なマルチソース設定で先行メソッドよりも大幅に優れています。
- 参考スコア(独自算出の注目度): 2.522791298432536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised multi-source domain adaptation (UMDA) aims to learn models that generalize to an unlabeled target domain by leveraging labeled data from multiple, diverse source domains. While distributed UMDA methods address privacy constraints by avoiding raw data sharing, existing approaches typically assume a small number of sources and fail to scale effectively. Increasing the number of heterogeneous domains often makes existing methods impractical, leading to high computational overhead or unstable performance. We propose GALA, a scalable and robust federated UMDA framework that introduces two key components: (1) a novel inter-group discrepancy minimization objective that efficiently approximates full pairwise domain alignment without quadratic computation; and (2) a temperature-controlled, centroid-based weighting strategy that dynamically prioritizes source domains based on alignment with the target. Together, these components enable stable and parallelizable training across large numbers of heterogeneous sources. To evaluate performance in high-diversity scenarios, we introduce Digit-18, a new benchmark comprising 18 digit datasets with varied synthetic and real-world domain shifts. Extensive experiments show that GALA consistently achieves competitive or state-of-the-art results on standard benchmarks and significantly outperforms prior methods in diverse multi-source settings where others fail to converge.
- Abstract(参考訳): Unsupervised Multi-source Domain adapt (UMDA) は、複数の多様なソースドメインからのラベル付きデータを活用することにより、ラベルなしのターゲットドメインに一般化するモデルを学習することを目的としている。
分散UMDAメソッドは生のデータ共有を回避してプライバシ制約に対処するが、既存のアプローチは通常、少数のソースを仮定し、効果的にスケールできない。
ヘテロジニアスドメインの数が増加すると、既存のメソッドは非現実的になり、高い計算オーバーヘッドや不安定なパフォーマンスをもたらす。
GALAはスケーラブルで堅牢なUMDAフレームワークであり,(1)グループ間不一致の最小化を目的とし,2次計算なしで全対ドメインアライメントを効率的に近似すること,(2)ターゲットとのアライメントに基づいてソースドメインを動的に優先順位付けする温度制御型セントロイド重み付け戦略を提案する。
これらのコンポーネントは、多数の異種源をまたいだ安定かつ並列化可能なトレーニングを可能にする。
高多様性シナリオの性能を評価するために,合成ドメインシフトと実世界のドメインシフトの異なる18桁のデータセットからなる新しいベンチマークであるDigit-18を紹介する。
広範な実験により、GALAは標準ベンチマークにおける競争力や最先端の結果を一貫して達成し、他者が収束しない多様なマルチソース設定において、従来の手法よりも大幅に優れていたことが示されている。
関連論文リスト
- Multi-Prompt Progressive Alignment for Multi-Source Unsupervised Domain Adaptation [73.40696661117408]
未ラベルの下流タスクにCLIPを適用するためのプログレッシブアライメント戦略を提案する。
私たちはアプローチをMP2Aと名付け、ImageCLEF、Office-Home、そして最も難しいDomainNetという3つの人気のあるUDAベンチマークでテストします。
実験によると、MP2Aは最新のCLIPベースのMS-UDAアプローチと比較して最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-07-31T09:42:42Z) - Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
クロスシーン画像分類は, 異なる分布領域のアノテート領域に, 地中物質の事前の知識を伝達することを目的としている。
既存のアプローチでは、未確認のターゲットドメインへの単一ソースドメインの一般化に重点を置いている。
マルチソースリモートセンシングデータの均一性と不均一性特性に基づく,新しいマルチソース協調型ドメイン一般化フレームワーク(MS-CDG)を提案する。
論文 参考訳(メタデータ) (2024-12-05T06:15:08Z) - PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization [24.413415998529754]
本稿では,Hybrid Domain Generalization (HDG) と,アルゴリズムのロバスト性を評価するために,様々な分割を構成する新しい指標である$H2$-CVを提案する。
提案手法は,複数のデータセット上での最先端アルゴリズムよりも優れており,特にデータ不足に直面する場合のロバスト性の向上に寄与する。
論文 参考訳(メタデータ) (2024-04-13T13:41:13Z) - Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA)は、アノテートするターゲットデータの限られた数を選択することで、新しいターゲットドメインにおけるモデル適応を最大限に向上することを目的としている。
この設定は、複数のソースからトレーニングデータを収集するより実践的なシナリオを無視します。
これは、ADAを単一のソースドメインから複数のソースドメインに拡張する、新しい、挑戦的な知識転送の設定を目標にしています。
論文 参考訳(メタデータ) (2023-11-21T13:12:21Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
マルチソースアン教師付きドメイン適応(MUDA)は、関連するソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
アクティブマルチドメイン適応(D3AAMDA)のための動的ドメイン不一致適応法(Dynamic Domain Disrepancy Adjustment)を提案する。
このメカニズムは、ソースドメインとターゲットドメイン間の特徴のアライメントレベルを制御し、ソースドメイン内のローカルな有利な特徴情報を効果的に活用する。
論文 参考訳(メタデータ) (2023-07-26T09:40:19Z) - Multi-Source domain adaptation via supervised contrastive learning and
confident consistency regularization [0.0]
Multi-Source Unsupervised Domain Adaptation (multi-source UDA)は、複数のラベル付きソースドメインからモデルを学習することを目的としている。
本稿では,この制限に対処するマルチソースUDAに対して,コントラスト型マルチソースドメイン適応(CMSDA)を提案する。
論文 参考訳(メタデータ) (2021-06-30T14:39:15Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインでトレーニングされた機械学習モデルが、統計の異なるターゲットドメインでうまく一般化できないという、ドメインシフトの問題を扱う。
シフト対象領域の一般化を保証するのに失敗するソースドメイン全体にわたるドメイン不変表現を学習することにより、ドメイン一般化の問題を解決するために、複数のアプローチが提案されている。
本稿では,GNNDM(Generative Nearest Neighbor Based Discrepancy Minimization)法を提案する。
論文 参考訳(メタデータ) (2020-07-28T14:54:25Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
ドメイン一般化(DG)は、人物再識別(Re-ID)を扱うための有望なソリューションとして機能する
本稿では、複数のソースドメインの分布を選択的に整列させることにより、この問題に対処するDual Distribution Alignment Network(DDAN)を提案する。
大規模なDomain Generalization Re-ID(DG Re-ID)ベンチマークでDDANを評価した。
論文 参考訳(メタデータ) (2020-07-27T00:08:07Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
ML-MSDA(Multial Learning Network for Multiple Source Domain Adaptation)を提案する。
相互学習の枠組みのもと,提案手法は対象ドメインと各ソースドメインをペアリングし,条件付き対向ドメイン適応ネットワークを分岐ネットワークとして訓練する。
提案手法は, 比較手法より優れ, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-03-29T04:31:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。