論文の概要: Enhancing Self-Supervised Learning with Semantic Pairs A New Dataset and Empirical Study
- arxiv url: http://arxiv.org/abs/2510.08722v1
- Date: Thu, 09 Oct 2025 18:31:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:47.489876
- Title: Enhancing Self-Supervised Learning with Semantic Pairs A New Dataset and Empirical Study
- Title(参考訳): セマンティックペアによる自己指導型学習の促進 : 新たなデータセットと実証的研究
- Authors: Mohammad Alkhalefi, Georgios Leontidis, Mingjun Zhong,
- Abstract要約: インスタンス識別は、データセット内の個々のインスタンスを別々のクラスとして扱う、自己教師付き表現学習パラダイムである。
これは典型的には、変換を適用することによって、各インスタンスの2つの異なるビューを生成することで達成される。
- 参考スコア(独自算出の注目度): 2.4405762029252465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instance discrimination is a self-supervised representation learning paradigm wherein individual instances within a dataset are treated as distinct classes. This is typically achieved by generating two disparate views of each instance by applying stochastic transformations, which encourages the model to learn representations that are invariant to the common underlying object across these views.
- Abstract(参考訳): インスタンス識別は、データセット内の個々のインスタンスを別々のクラスとして扱う、自己教師付き表現学習パラダイムである。
これは典型的には、確率変換を適用して各インスタンスの2つの異なるビューを生成することで達成される。
関連論文リスト
- Exploring Transferable Homogeneous Groups for Compositional Zero-Shot Learning [10.687828416652929]
均質なグループ表現学習(HGRL)は、複数の同質なサブグループ表現学習として状態(オブジェクト)表現学習を定式化した新しい視点である。
本手法では,3つのコアコンポーネントを統合し,視覚的表現能力と即時表現能力の両立を図っている。
論文 参考訳(メタデータ) (2025-01-18T08:19:48Z) - In-Context Symmetries: Self-Supervised Learning through Contextual World Models [41.61360016455319]
我々は、文脈に注意を払って、異なる変換に不変あるいは同変に適応できる一般的な表現を学ぶことを提案する。
提案するアルゴリズムであるContextual Self-Supervised Learning (ContextSSL)は,すべての変換に等しくなることを学習する。
論文 参考訳(メタデータ) (2024-05-28T14:03:52Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML)は、トレーニング済みモデルのコレクションから、元のデータにアクセスせずに知識を抽出することを目的としている。
現在の手法は、事前訓練されたモデル間の不均一性を見落とし、タスクの衝突による性能低下につながることが多い。
論文 参考訳(メタデータ) (2024-05-26T13:11:55Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Not All Instances Contribute Equally: Instance-adaptive Class
Representation Learning for Few-Shot Visual Recognition [94.04041301504567]
少数ショットの視覚認識は、いくつかのラベル付きインスタンスから新しい視覚概念を認識することを指す。
本稿では,数ショットの視覚認識を実現するために,インスタンス適応型クラス表現学習ネットワーク(ICRL-Net)と呼ばれる新しいメトリックベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-07T10:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。