論文の概要: Déréverbération non-supervisée de la parole par modèle hybride
- arxiv url: http://arxiv.org/abs/2510.09025v1
- Date: Fri, 10 Oct 2025 05:51:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 04:53:46.922892
- Title: Déréverbération non-supervisée de la parole par modèle hybride
- Title(参考訳): Déréverbération non-supervisée de la parole par modèle hybride
- Authors: Louis Bahrman, Mathieu Fontaine, Gaël Richard,
- Abstract要約: 本手法では,残響時間(RT60)などの限られた音響情報を用いて,残響システムの訓練を行う。
実験結果から,本手法は最先端技術よりも,様々な客観的指標にまたがる一貫した性能を実現することが示された。
- 参考スコア(独自算出の注目度): 26.82558286573733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new training strategy to improve speech dereverberation systems in an unsupervised manner using only reverberant speech. Most existing algorithms rely on paired dry/reverberant data, which is difficult to obtain. Our approach uses limited acoustic information, like the reverberation time (RT60), to train a dereverberation system. Experimental results demonstrate that our method achieves more consistent performance across various objective metrics than the state-of-the-art.
- Abstract(参考訳): 本稿では,残響音声のみを用いて,教師なしで音声の残響システムを改善するための新たなトレーニング戦略を提案する。
既存のアルゴリズムのほとんどは、ペア化された乾燥/残響データに依存しており、入手は困難である。
本手法では,残響時間(RT60)などの限られた音響情報を用いて,残響システムの訓練を行う。
実験結果から,本手法は最先端技術よりも,様々な客観的指標にまたがる一貫した性能を実現することが示された。
関連論文リスト
- A Hybrid Model for Weakly-Supervised Speech Dereverberation [2.731944614640173]
本稿では,最小限の音響情報と残響(ウェット)音声を用いた音声認識システムを改善するための新たな学習手法を提案する。
実験結果から,本手法は,最先端技術よりも,音声の残響に使用される様々な客観的指標に対して,より一貫した性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2025-02-06T09:21:22Z) - Diffusion-based speech enhancement with a weighted generative-supervised
learning loss [0.0]
拡散に基づく生成モデルは近年,音声強調(SE)において注目を集めている。
そこで本研究では,従来の拡散訓練目標を平均二乗誤差(MSE)損失で拡張することを提案する。
論文 参考訳(メタデータ) (2023-09-19T09:13:35Z) - Contextual-Utterance Training for Automatic Speech Recognition [65.4571135368178]
本稿では,過去と将来の文脈発話を利用した文脈発話訓練手法を提案する。
また,自動音声認識(ASR)システムをストリーミングするための2モード文脈発話訓練手法を提案する。
提案手法により、WERと平均最後のトークン放出遅延を6%以上、40ms以上削減できる。
論文 参考訳(メタデータ) (2022-10-27T08:10:44Z) - Speech Enhancement and Dereverberation with Diffusion-based Generative
Models [14.734454356396157]
本稿では,微分方程式に基づく拡散過程について概説する。
提案手法により,30段階の拡散しか行わず,高品質なクリーン音声推定が可能であることを示す。
大規模なクロスデータセット評価では、改良された手法が近年の識別モデルと競合することを示す。
論文 参考訳(メタデータ) (2022-08-11T13:55:12Z) - Learning Phone Recognition from Unpaired Audio and Phone Sequences Based
on Generative Adversarial Network [58.82343017711883]
そこで本研究では,不適切な音声系列や発話から直接学習する方法について検討する。
GAN訓練を第1段階に導入し,無声音声と音声シーケンスのマッピング関係を求める。
第2段階では、発電機の出力からトレーニングするために別のHMMモデルが導入され、性能が向上する。
論文 参考訳(メタデータ) (2022-07-29T09:29:28Z) - On monoaural speech enhancement for automatic recognition of real noisy
speech using mixture invariant training [33.79711018198589]
既存の混合不変訓練基準を拡張して、未ペア音声と実雑音データの両方を利用する。
実雑音音声から分離した音声の品質を向上させるためには, 未ペアクリーン音声が不可欠であることがわかった。
提案手法は、処理成果物を軽減するために、処理された信号と処理されていない信号のリミックスも行う。
論文 参考訳(メタデータ) (2022-05-03T19:37:58Z) - Sequence-level self-learning with multiple hypotheses [53.04725240411895]
我々は、自動音声認識(ASR)のためのアテンションベースシーケンス・ツー・シーケンス(seq2seq)モデルを用いた新しい自己学習手法を開発した。
従来の教師なし学習手法とは対照的に,我々はEmphmulti-task Learning(MTL)フレームワークを採用する。
実験の結果,本手法は,英語データのみを用いてトレーニングしたベースラインモデルと比較して,英文音声データのWERを14.55%から10.36%に削減できることがわかった。
論文 参考訳(メタデータ) (2021-12-10T20:47:58Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
実環境における音声認識システムの実現には,雑音の堅牢性が不可欠である。
雑音認識のための自己教師型フレームワークにより学習したノイズロスト表現を用いる。
ラベル付きデータのわずか16%で報告された最高の教師付きアプローチに匹敵するパフォーマンスを実現した。
論文 参考訳(メタデータ) (2021-10-28T20:39:02Z) - Robust Imitation Learning from Noisy Demonstrations [81.67837507534001]
我々は,対称的損失を伴う分類リスクを最適化することにより,ロバストな模倣学習を実現することができることを示す。
擬似ラベルと協調学習を効果的に組み合わせた新しい模倣学習法を提案する。
連続制御ベンチマークによる実験結果から,本手法は最先端手法よりも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-10-20T10:41:37Z) - Segment Aggregation for short utterances speaker verification using raw
waveforms [47.41124427552161]
本稿では,短い発話に対する話者検証の性能劣化を補う手法を提案する。
提案手法はアンサンブルに基づく設計を採用し,話者検証システムの安定性と精度を向上させる。
論文 参考訳(メタデータ) (2020-05-07T08:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。