論文の概要: Adaptive Decoding via Hierarchical Neural Information Gradients in Mouse Visual Tasks
- arxiv url: http://arxiv.org/abs/2510.09451v1
- Date: Fri, 10 Oct 2025 15:00:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 04:53:46.947912
- Title: Adaptive Decoding via Hierarchical Neural Information Gradients in Mouse Visual Tasks
- Title(参考訳): マウス視覚課題における階層的神経情報勾配による適応的デコーディング
- Authors: Jingyi Feng, Xiang Feng,
- Abstract要約: 階層的なディープニューラルネットワーク(DNN)は、複雑なデータの中核的な特徴をマイニングするためのツールとして重要な役割を果たしています。
適応トポロジカルビジョン変換器(AT-ViT)と呼ばれる脳領域間の適応トポロジカルデコーディングの手法を提案する。
多くの実験において,視覚課題における階層型ネットワークにおける提案手法の重要性が示された。
- 参考スコア(独自算出の注目度): 7.199942082447265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the encoding and decoding mechanisms of dynamic neural responses to different visual stimuli is an important topic in exploring how the brain represents visual information. Currently, hierarchically deep neural networks (DNNs) have played a significant role as tools for mining the core features of complex data. However, most methods often overlook the dynamic generation process of neural data, such as hierarchical brain's visual data, within the brain's structure. In the decoding of brain's visual data, two main paradigms are 'fine-grained decoding tests' and 'rough-grained decoding tests', which we define as focusing on a single brain region and studying the overall structure across multiple brain regions, respectively. In this paper, we mainly use the Visual Coding Neuropixel dataset from the Allen Brain Institute, and the hierarchical information extracted from some single brain regions (i.e., fine-grained decoding tests) is provided to the proposed method for studying the adaptive topological decoding between brain regions, called the Adaptive Topological Vision Transformer, or AT-ViT. In numerous experiments, the results reveal the importance of the proposed method in hierarchical networks in the visual tasks, and also validate the hypothesis that "the hierarchical information content in brain regions of the visual system can be quantified by decoding outcomes to reflect an information hierarchy." Among them, we found that neural data collected in the hippocampus can have a random decoding performance, and this negative impact on performance still holds significant scientific value.
- Abstract(参考訳): 異なる視覚刺激に対する動的神経反応の符号化と復号のメカニズムを理解することは、脳が視覚情報をどのように表現するかを研究する上で重要なトピックである。
現在、階層的なディープニューラルネットワーク(DNN)は、複雑なデータのコア機能をマイニングするツールとして重要な役割を果たしている。
しかし、ほとんどの手法は、階層的な脳の視覚データのような、脳の構造内の神経データの動的生成プロセスを見落としている。
脳の視覚データの復号には、「きめ細かい復号テスト」と「きめ細かい復号テスト」という2つのパラダイムがある。
本稿では、主にアレン脳研究所の視覚符号化ニューロピクセルデータセットを使用し、適応トポロジカル・ビジョン・トランスフォーマー(AT-ViT)と呼ばれる、脳領域間の適応トポロジカル・デコードを研究する方法を提案する。
多くの実験において、視覚課題における階層的ネットワークにおける提案手法の重要性を明らかにし、「視覚系の脳領域における階層的情報内容は、結果を復号して情報階層を反映して定量化できる」という仮説を検証した。
そのうち,海馬で収集した神経データは,ランダムな復号化性能を有することが判明した。
関連論文リスト
- MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data [64.92867794764247]
MindAlignerは、限られたfMRIデータからのクロスオブジェクト脳デコーディングのためのフレームワークである。
脳伝達マトリックス(BTM)は、任意の新しい被験者の脳信号を既知の被験者の1人に投射する。
脳機能アライメントモジュールは、異なる視覚刺激下で軟質なクロスオブジェクト脳アライメントを実行するために提案されている。
論文 参考訳(メタデータ) (2025-02-07T16:01:59Z) - Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models [10.615012396285337]
我々は脳全体の活性化マップを組み込むことで視覚過程の理解を高めるアルゴリズムを開発した。
まず,視覚処理を復号化するための最先端手法と比較し,予測意味精度を43%向上させた。
論文 参考訳(メタデータ) (2024-11-11T16:51:17Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Aligning brain functions boosts the decoding of visual semantics in
novel subjects [3.226564454654026]
脳の反応をビデオや静止画像に合わせることで脳の復号化を促進することを提案する。
提案手法はオブジェクト外デコード性能を最大75%向上させる。
また、テスト対象者に対して100分未満のデータが得られる場合、古典的な単一オブジェクトアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T15:55:20Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
既存のfMRIベースの脳デコードのための機械学習手法は、分類性能が低いか、説明性が悪いかのいずれかに悩まされている。
本稿では,機能的脳活動の時空間グラフ表現を捉えるために,生物学的にインスパイアされたアーキテクチャである時空間ピラミドグラフ畳み込みネットワーク(STpGCN)を提案する。
我々は,Human Connectome Project (HCP) S1200から23の認知タスク下でのfMRIデータに関する広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-08T12:14:33Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Visual Explanation for Identification of the Brain Bases for Dyslexia on
fMRI Data [13.701992590330395]
ネットワーク可視化技術を用いて、高レベルの特徴を学習するために必要な畳み込みニューラルネットワーク層において、分類された条件に対する専門家が支援する洞察に意味のあるイメージを提供することができることを示す。
以上の結果から,脳画像のみによる発達障害の正確な分類だけでなく,同時代の神経科学的知識と一致する特徴の自動可視化も可能となった。
論文 参考訳(メタデータ) (2020-07-17T22:11:30Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。