論文の概要: Interpretable Generative and Discriminative Learning for Multimodal and Incomplete Clinical Data
- arxiv url: http://arxiv.org/abs/2510.09513v1
- Date: Fri, 10 Oct 2025 16:20:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:49.387404
- Title: Interpretable Generative and Discriminative Learning for Multimodal and Incomplete Clinical Data
- Title(参考訳): マルチモーダル・不完全な臨床データに対する解釈可能な生成・識別学習
- Authors: Albert Belenguer-Llorens, Carlos Sevilla-Salcedo, Janaina Mourao-Miranda, Vanessa Gómez-Verdejo,
- Abstract要約: 実世界の臨床問題は、しばしばマルチモーダルデータによって特徴づけられ、機械学習アルゴリズムに重大な制限を課している。
解釈可能な解を提供しながら,これらの課題を効率的に処理するベイズ的手法を提案する。
本手法は,(1)半教師付き戦略との相互関係を捉えた生成的定式化,(2)特定の下流目標に対する関連情報を特定するための識別的タスク指向定式化を統合したものである。
- 参考スコア(独自算出の注目度): 1.2262639401532156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world clinical problems are often characterized by multimodal data, usually associated with incomplete views and limited sample sizes in their cohorts, posing significant limitations for machine learning algorithms. In this work, we propose a Bayesian approach designed to efficiently handle these challenges while providing interpretable solutions. Our approach integrates (1) a generative formulation to capture cross-view relationships with a semi-supervised strategy, and (2) a discriminative task-oriented formulation to identify relevant information for specific downstream objectives. This dual generative-discriminative formulation offers both general understanding and task-specific insights; thus, it provides an automatic imputation of the missing views while enabling robust inference across different data sources. The potential of this approach becomes evident when applied to the multimodal clinical data, where our algorithm is able to capture and disentangle the complex interactions among biological, psychological, and sociodemographic modalities.
- Abstract(参考訳): 実世界の臨床問題は、しばしばマルチモーダルデータによって特徴づけられ、通常は不完全ビューとコホート内のサンプルサイズが制限され、機械学習アルゴリズムに重大な制限が課される。
本研究では,解釈可能な解を提供しながら,これらの課題を効率的に処理するベイズ的手法を提案する。
本手法は,(1)半教師付き戦略との相互関係を捉えた生成的定式化,(2)特定の下流目標に対する関連情報を特定するための識別的タスク指向定式化を統合したものである。
この二重生成-識別型定式化は、一般的な理解とタスク固有の洞察の両方を提供するため、異なるデータソース間で堅牢な推論を可能にしながら、欠落したビューを自動的に計算する。
本手法は, 生体, 心理, 社会デマログラフィーの複雑な相互作用を捉え, 切り離すことができるマルチモーダル臨床データに適用した場合, このアプローチの可能性が明らかになる。
関連論文リスト
- Causal Debiasing Medical Multimodal Representation Learning with Missing Modalities [6.02318066285653]
現実の医療データセットは、コスト、プロトコル、患者固有の制約によって、しばしばモダリティの欠如に悩まされる。
本手法は,(1) バックドア調整に基づく因果介入を近似する欠如解離モジュール,(2) 因果関係から因果関係を明示的に解離する二重分岐ニューラルネットワークの2つの重要な構成要素から構成される。
論文 参考訳(メタデータ) (2025-09-06T06:27:10Z) - Fair Deepfake Detectors Can Generalize [51.21167546843708]
共同設立者(データ分散とモデルキャパシティ)の制御により,公正な介入による一般化が向上することを示す。
この知見を応用して, 逆正当性重み付けとサブグループワイド特徴正規化を併用し, 新たなアライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・インセンティブ・インターベンション・インベンション・インテクション(DAID)を提案する。
DAIDは、いくつかの最先端技術と比較して、公平性と一般化の両方において一貫して優れた性能を達成する
論文 参考訳(メタデータ) (2025-07-03T14:10:02Z) - Incomplete Modality Disentangled Representation for Ophthalmic Disease Grading and Diagnosis [16.95583564875497]
本稿では,不完全なモダリティ・ディアンタングル表現(IMDR)戦略を提案する。
4つのマルチモーダルデータセットの実験により、提案したIMDRが最先端の手法を大幅に上回ることを示した。
論文 参考訳(メタデータ) (2025-02-17T12:10:35Z) - A Learnable Multi-views Contrastive Framework with Reconstruction Discrepancy for Medical Time-Series [8.741139851597364]
本稿では、関連するタスクから外部データを取り込み、AE-GANを利用して事前知識を抽出することを提案する。
マルチヘッドアテンション機構を統合し,異なる視点から表現を適応的に学習するフレームワークであるLMCFを紹介する。
3つのターゲットデータセットの実験により、我々の手法が他の7つのベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2025-01-30T14:20:11Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - An Information Criterion for Controlled Disentanglement of Multimodal Data [39.601584166020274]
マルチモーダル表現学習は、複数のモーダルに固有の情報を関連付けて分解しようとする。
Disentangled Self-Supervised Learning (DisentangledSSL)は、非角表現を学習するための新しい自己教師型アプローチである。
論文 参考訳(メタデータ) (2024-10-31T14:57:31Z) - Advancing Multimodal Data Fusion in Pain Recognition: A Strategy Leveraging Statistical Correlation and Human-Centered Perspectives [0.3749861135832073]
本研究では、痛み行動認識のための新しいマルチモーダルデータ融合手法を提案する。
1)データ駆動型統計関連度重みを融合戦略に統合し,2)マルチモーダル表現学習に人間中心の運動特性を取り入れた。
本研究は,患者中心型医療介入を推進し,説明可能な臨床意思決定を支援するために重要な意味を持つ。
論文 参考訳(メタデータ) (2024-03-30T11:13:18Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
本稿では、介入データを活用可能なニューラルネットワークに基づく理論的基盤化手法を提案する。
提案手法は,様々な環境下での美術品の状態と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-07-03T15:19:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。