論文の概要: It's 2025 -- Narrative Learning is the new baseline to beat for explainable machine learning
- arxiv url: http://arxiv.org/abs/2510.09723v1
- Date: Fri, 10 Oct 2025 07:34:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.590783
- Title: It's 2025 -- Narrative Learning is the new baseline to beat for explainable machine learning
- Title(参考訳): 2025年 -- ナラティブラーニングは、説明可能な機械学習に勝つための新しいベースライン
- Authors: Gregory D. Baker,
- Abstract要約: ナラティブラーニング(Narrative Learning)は、モデルを完全に自然言語で定義し、説明的プロンプトを用いて分類基準を反復的に洗練する手法である。
3つの自然データセットと3つのデータセットを用いて、このアプローチの精度と可能性を評価し、それらを7つのベースラインで説明可能な機械学習モデルと比較する実験について報告する。
6つのデータセットのうち5つで、Narrative Learningは、2025年以降の言語モデルの改善により、ベースラインで説明可能なモデルよりも正確になった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Narrative Learning, a methodology where models are defined entirely in natural language and iteratively refine their classification criteria using explanatory prompts rather than traditional numerical optimisation. We report on experiments to evaluate the accuracy and potential of this approach using 3 synthetic and 3 natural datasets and compare them against 7 baseline explainable machine learning models. We demonstrate that on 5 out of 6 of these datasets, Narrative Learning became more accurate than the baseline explainable models in 2025 or earlier because of improvements in language models. We also report on trends in the lexicostatistics of these models' outputs as a proxy for the comprehensibility of the explanations.
- Abstract(参考訳): 本稿では、モデルを完全に自然言語で定義する方法論であるナラティブラーニングを紹介し、従来の数値最適化ではなく説明的プロンプトを用いて分類基準を反復的に洗練する。
3つの自然データセットと3つのデータセットを用いて、このアプローチの精度と可能性を評価し、それらを7つのベースラインで説明可能な機械学習モデルと比較する実験について報告する。
これらのデータセットのうち6つのうち5つで、2025年以降の言語モデルの改善により、Narrative Learningはベースラインで説明可能なモデルよりも正確になりました。
また、これらのモデルのアウトプットのレキシコ統計学の傾向を、説明の理解のプロキシとして報告する。
関連論文リスト
- Explainability for Machine Learning Models: From Data Adaptability to
User Perception [0.8702432681310401]
この論文は、すでにデプロイされた機械学習モデルに対する局所的な説明の生成を探求する。
データとユーザ要件の両方を考慮して、意味のある説明を生み出すための最適な条件を特定することを目的としている。
論文 参考訳(メタデータ) (2024-02-16T18:44:37Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Learning with Explanation Constraints [91.23736536228485]
我々は、説明がモデルの学習をどのように改善するかを分析するための学習理論フレームワークを提供する。
我々は,多数の合成および実世界の実験に対して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T15:06:47Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Learning to Scaffold: Optimizing Model Explanations for Teaching [74.25464914078826]
我々は3つの自然言語処理とコンピュータビジョンタスクのモデルを訓練する。
筆者らは,本フレームワークで抽出した説明文を学習した学生が,従来の手法よりもはるかに効果的に教師をシミュレートできることを発見した。
論文 参考訳(メタデータ) (2022-04-22T16:43:39Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
本稿では,逆逆強化学習を利用した新しいフレームワークを提案する。
このフレームワークは、強化学習モデルによる決定のグローバルな説明を提供する。
モデルの意思決定過程を要約することで、モデルが従う直感的な傾向を捉える。
論文 参考訳(メタデータ) (2022-03-30T17:01:59Z) - Turning Tables: Generating Examples from Semi-structured Tables for
Endowing Language Models with Reasoning Skills [32.55545292360155]
本稿では,半構造化テーブルを活用し,大規模質問とパラグラフのペアを自動的に生成する手法を提案する。
16種類の推論スキルを必要とする例を含む、この合成データに対する事前学習のステップを追加します。
我々のモデルであるPReasMは、トレーニング済みエンコーダ-デコーダモデルであるT5を大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-07-15T11:37:14Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Linguistic Features for Readability Assessment [0.0]
言語的に動機づけられた特徴を持つディープラーニングモデルを強化することで、パフォーマンスがさらに向上するかどうかは不明だ。
十分なトレーニングデータから、言語的に動機づけられた特徴を持つディープラーニングモデルを増強しても、最先端のパフォーマンスは向上しないことがわかった。
本研究は,現在最先端のディープラーニングモデルが可読性に関連するテキストの言語的特徴を表現しているという仮説の予備的証拠を提供する。
論文 参考訳(メタデータ) (2020-05-30T22:14:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。