論文の概要: Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2203.16464v3
- Date: Fri, 1 Mar 2024 18:40:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 21:21:25.569944
- Title: Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning
- Title(参考訳): 逆強化学習による解釈可能な深層強化学習モデルの構築
- Authors: Sean Xie, Soroush Vosoughi, Saeed Hassanpour
- Abstract要約: 本稿では,逆逆強化学習を利用した新しいフレームワークを提案する。
このフレームワークは、強化学習モデルによる決定のグローバルな説明を提供する。
モデルの意思決定過程を要約することで、モデルが従う直感的な傾向を捉える。
- 参考スコア(独自算出の注目度): 27.841725567976315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence, particularly through recent advancements in deep
learning, has achieved exceptional performances in many tasks in fields such as
natural language processing and computer vision. In addition to desirable
evaluation metrics, a high level of interpretability is often required for
these models to be reliably utilized. Therefore, explanations that offer
insight into the process by which a model maps its inputs onto its outputs are
much sought-after. Unfortunately, the current black box nature of machine
learning models is still an unresolved issue and this very nature prevents
researchers from learning and providing explicative descriptions for a model's
behavior and final predictions. In this work, we propose a novel framework
utilizing Adversarial Inverse Reinforcement Learning that can provide global
explanations for decisions made by a Reinforcement Learning model and capture
intuitive tendencies that the model follows by summarizing the model's
decision-making process.
- Abstract(参考訳): 人工知能は、特に近年のディープラーニングの進歩を通じて、自然言語処理やコンピュータビジョンといった分野における多くのタスクにおいて、例外的なパフォーマンスを達成した。
望ましい評価指標に加えて、これらのモデルを確実に活用するには高いレベルの解釈可能性が必要である。
したがって、モデルが入力を出力にマッピングするプロセスに関する洞察を提供する説明は、ずっと求められている。
残念なことに、現在の機械学習モデルのブラックボックスの性質はまだ未解決の問題であり、この性質は研究者がモデルの振る舞いと最終的な予測を学習し説明することを妨げる。
本研究では,Reinforcement Learningモデルによる意思決定のグローバルな説明を提供し,モデルの意思決定プロセスの要約によってモデルが従う直感的な傾向を捉えるための,Adversarial Inverse Reinforcement Learningを活用した新しいフレームワークを提案する。
関連論文リスト
- Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T13:56:54Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
我々は、最先端の学習ベースアプローチの2つのタイプを広範かつ包括的に調査する。
本稿では,シーケンスベースモデルの優先度と,グラフベースモデルの限定能力について実験的に検証する。
論文 参考訳(メタデータ) (2024-08-14T13:01:30Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Analyzing a Caching Model [7.378507865227209]
解釈容易性は、現実世界のデプロイメントにおいて、依然として大きな障害である。
現状のキャッシュモデルを分析することで、単純な統計以上の概念を学習したことを示す。
論文 参考訳(メタデータ) (2021-12-13T19:53:07Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。