論文の概要: Tight Robustness Certificates and Wasserstein Distributional Attacks for Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2510.10000v1
- Date: Sat, 11 Oct 2025 03:59:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.730585
- Title: Tight Robustness Certificates and Wasserstein Distributional Attacks for Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークにおけるタイトロバスト性証明とワッサースタイン分布攻撃
- Authors: Bach C. Le, Tung V. Dao, Binh T. Nguyen, Hong T. M. Chu,
- Abstract要約: Wassersteinの分散ロバスト最適化(WDRO)は、対向ロバスト性のためのフレームワークを提供する。
予備的なアプローチを導入し、正確なリプシッツ証明の概念を採用して、WDROの上界を締め付ける。
また,最悪の分布候補を直接構築する新しいワッサースタイン分布攻撃(WDA)を提案する。
- 参考スコア(独自算出の注目度): 2.7862296491388903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wasserstein distributionally robust optimization (WDRO) provides a framework for adversarial robustness, yet existing methods based on global Lipschitz continuity or strong duality often yield loose upper bounds or require prohibitive computation. In this work, we address these limitations by introducing a primal approach and adopting a notion of exact Lipschitz certificate to tighten this upper bound of WDRO. In addition, we propose a novel Wasserstein distributional attack (WDA) that directly constructs a candidate for the worst-case distribution. Compared to existing point-wise attack and its variants, our WDA offers greater flexibility in the number and location of attack points. In particular, by leveraging the piecewise-affine structure of ReLU networks on their activation cells, our approach results in an exact tractable characterization of the corresponding WDRO problem. Extensive evaluations demonstrate that our method achieves competitive robust accuracy against state-of-the-art baselines while offering tighter certificates than existing methods. Our code is available at https://github.com/OLab-Repo/WDA
- Abstract(参考訳): ワッサーシュタイン分布論的ロバスト最適化(WDRO)は、対向的ロバスト性のためのフレームワークを提供するが、大域的なリプシッツ連続性や強双対性に基づく既存の手法は、しばしば緩やかな上界を生じるか、禁制的な計算を必要とする。
そこで本研究では,WDROの上限を狭めるために,原始的アプローチを導入し,正確なリプシッツ証明の概念を採用することにより,これらの制限に対処する。
さらに,最悪の分布候補を直接構築する新しいワッサースタイン分布攻撃(WDA)を提案する。
既存のポイントワイド攻撃とその変種と比較して、我々のWDAは攻撃ポイントの数と位置の柔軟性が向上する。
特に, アクティベーションセル上のReLUネットワークのピースワイズアフィン構造を利用して, 対応するWDRO問題を正確に解析する。
提案手法は,既存の手法よりも厳密な証明を提供しながら,最先端のベースラインに対して競争力のある精度を実現することを示す。
私たちのコードはhttps://github.com/OLab-Repo/WDAで利用可能です。
関連論文リスト
- BiCert: A Bilinear Mixed Integer Programming Formulation for Precise Certified Bounds Against Data Poisoning Attacks [62.897993591443594]
データ中毒攻撃は、現代のAIシステムにとって最大の脅威の1つだ。
データ中毒攻撃は、現代のAIシステムにとって最大の脅威の1つだ。
データ中毒攻撃は、現代のAIシステムにとって最大の脅威の1つだ。
論文 参考訳(メタデータ) (2024-12-13T14:56:39Z) - Certified Robustness for Deep Equilibrium Models via Serialized Random Smoothing [12.513566361816684]
Deep Equilibrium Models (DEQ)のような暗黙のモデルは、ディープニューラルネットワークを構築するための有望な代替アプローチとして現れている。
決定論的認証手法を用いた既存のDECの認証防御は、大規模なデータセットでは認証できない。
我々はこれらの制限を解決するために、DECに対する最初のランダム化スムーズな認証防御を提供する。
論文 参考訳(メタデータ) (2024-11-01T06:14:11Z) - SureFED: Robust Federated Learning via Uncertainty-Aware Inward and
Outward Inspection [29.491675102478798]
本稿では,堅牢なフェデレーション学習のための新しいフレームワークであるSureFEDを紹介する。
SureFEDは、良識のあるクライアントのローカル情報を使って信頼を確立する。
理論的には、データとモデル中毒攻撃に対するアルゴリズムの堅牢性を証明する。
論文 参考訳(メタデータ) (2023-08-04T23:51:05Z) - Wasserstein distributional robustness of neural networks [9.79503506460041]
ディープニューラルネットワークは敵攻撃(AA)に弱いことが知られている
画像認識タスクでは、元の小さな摂動によって画像が誤分類される可能性がある。
本稿では,Wassersteinの分散ロバスト最適化(DRO)技術を用いて問題を再検討し,新しいコントリビューションを得た。
論文 参考訳(メタデータ) (2023-06-16T13:41:24Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
本稿では,複数のエージェントが環境を探索し,その経験を中央サーバを通じて伝達する分散強化学習環境について考察する。
エージェントの$alpha$-fractionは敵対的であり、任意の偽情報を報告することができる。
我々は、これらの対立エージェントの存在下で、マルコフ決定プロセスの根底にある準最適政策を特定することを模索する。
論文 参考訳(メタデータ) (2022-06-01T00:44:53Z) - Distributionally Robust Bayesian Optimization with $\varphi$-divergences [45.48814080654241]
我々は,$varphi$-divergencesにおけるデータシフトに対するロバスト性について考察する。
この設定におけるDRO-BO問題は有限次元最適化問題と等価であり、連続的な文脈でも証明可能な部分線型後悔境界で容易に実装できることを示す。
論文 参考訳(メタデータ) (2022-03-04T04:34:52Z) - A Unified Wasserstein Distributional Robustness Framework for
Adversarial Training [24.411703133156394]
本稿では、ワッサーシュタイン分布のロバスト性と現在の最先端AT法を結合する統一的なフレームワークを提案する。
我々は、新しいワッサースタインコスト関数と、新しい一連のリスク関数を導入し、標準ATメソッドが我々のフレームワークのそれに対応する特別なケースであることを示す。
この接続は、既存のAT手法の直感的な緩和と一般化をもたらし、分散ロバスト性ATベースのアルゴリズムの新たなファミリーの開発を促進する。
論文 参考訳(メタデータ) (2022-02-27T19:40:29Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。