論文の概要: Certified Robustness for Deep Equilibrium Models via Serialized Random Smoothing
- arxiv url: http://arxiv.org/abs/2411.00899v1
- Date: Fri, 01 Nov 2024 06:14:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:42:29.051616
- Title: Certified Robustness for Deep Equilibrium Models via Serialized Random Smoothing
- Title(参考訳): シリアル化ランダム平滑化による深部平衡モデルのロバスト性証明
- Authors: Weizhi Gao, Zhichao Hou, Han Xu, Xiaorui Liu,
- Abstract要約: Deep Equilibrium Models (DEQ)のような暗黙のモデルは、ディープニューラルネットワークを構築するための有望な代替アプローチとして現れている。
決定論的認証手法を用いた既存のDECの認証防御は、大規模なデータセットでは認証できない。
我々はこれらの制限を解決するために、DECに対する最初のランダム化スムーズな認証防御を提供する。
- 参考スコア(独自算出の注目度): 12.513566361816684
- License:
- Abstract: Implicit models such as Deep Equilibrium Models (DEQs) have emerged as promising alternative approaches for building deep neural networks. Their certified robustness has gained increasing research attention due to security concerns. Existing certified defenses for DEQs employing deterministic certification methods such as interval bound propagation and Lipschitz-bounds can not certify on large-scale datasets. Besides, they are also restricted to specific forms of DEQs. In this paper, we provide the first randomized smoothing certified defense for DEQs to solve these limitations. Our study reveals that simply applying randomized smoothing to certify DEQs provides certified robustness generalized to large-scale datasets but incurs extremely expensive computation costs. To reduce computational redundancy, we propose a novel Serialized Randomized Smoothing (SRS) approach that leverages historical information. Additionally, we derive a new certified radius estimation for SRS to theoretically ensure the correctness of our algorithm. Extensive experiments and ablation studies on image recognition demonstrate that our algorithm can significantly accelerate the certification of DEQs by up to 7x almost without sacrificing the certified accuracy. Our code is available at https://github.com/WeizhiGao/Serialized-Randomized-Smoothing.
- Abstract(参考訳): Deep Equilibrium Models (DEQ)のような暗黙のモデルは、ディープニューラルネットワークを構築するための有望な代替アプローチとして現れている。
彼らの認証された堅牢性は、セキュリティ上の懸念から研究の注目を集めている。
インターバルバウンド伝搬やリプシッツバウンドのような決定論的認証手法を用いたDECの既存の認証防御は、大規模なデータセットでは証明できない。
さらに、それらは特定のDECにも制限されている。
本稿では、これらの制限を解決するために、DECのランダム化スムーズな認証防御を初めて提供する。
我々の研究は、DECの認証にランダムスムーシングを適用するだけで、大規模データセットに一般化された信頼性の高いロバスト性が得られるが、非常に高価な計算コストを発生させることを明らかにした。
計算冗長性を低減するため,歴史情報を活用したSRS手法を提案する。
さらに,提案アルゴリズムの精度を理論的に保証するために,SRSの新しい認証半径推定法を導出する。
画像認識に関する大規模な実験およびアブレーション研究により、我々のアルゴリズムは、認証精度をほとんど犠牲にすることなく、DECの認定を最大7倍に向上させることができることを示した。
私たちのコードはhttps://github.com/WeizhiGao/Serialized-Randomized-Smoothing.comで利用可能です。
関連論文リスト
- Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing [87.48628403354351]
機械学習の認証は、特定の条件下では、敵対的なサンプルが特定の範囲内でモデルを回避できないことを証明している。
セグメンテーションの一般的な認証方法は、平らな粒度のクラスを使い、モデルの不確実性による高い断続率をもたらす。
本稿では,複数レベルの階層内で画素を認証し,不安定なコンポーネントに対して粗いレベルに適応的に認証を緩和する,新しい,より実用的な設定を提案する。
論文 参考訳(メタデータ) (2024-02-13T11:59:43Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
ディープニューラルネットワークの現実的な応用は、ノイズの多い入力や敵攻撃に直面した場合、その不安定な予測によって妨げられる。
入力にノイズ注入を頼りに、認証された半径を持つ効率的な分類器を設計する方法を示す。
新たな認証手法により、ランダムな平滑化による事前学習モデルの使用が可能となり、ゼロショット方式で現在の認証半径を効果的に改善できる。
論文 参考訳(メタデータ) (2023-09-28T22:41:47Z) - Incremental Randomized Smoothing Certification [5.971462597321995]
ごく少数のサンプルで近似モデルの認証を行うために、元のスムーズなモデルに対する認証保証を再利用する方法を示す。
提案手法の有効性を実験的に実証し,スクラッチから近似モデルのランダムな平滑化を適用した認証に対して,最大3倍の認証スピードアップを示す。
論文 参考訳(メタデータ) (2023-05-31T03:11:15Z) - Towards Evading the Limits of Randomized Smoothing: A Theoretical
Analysis [74.85187027051879]
決定境界を複数の雑音分布で探索することにより,任意の精度で最適な証明を近似できることを示す。
この結果は、分類器固有の認証に関するさらなる研究を後押しし、ランダム化された平滑化が依然として調査に値することを示す。
論文 参考訳(メタデータ) (2022-06-03T17:48:54Z) - Getting a-Round Guarantees: Floating-Point Attacks on Certified Robustness [19.380453459873298]
敵の例は、わずかな入力摂動によって機械学習分類器の決定を変更できるため、セキュリティリスクを引き起こす。
これらの保証は、ラウンドエラーを引き起こす浮動小数点表現の制限により無効化可能であることを示す。
この攻撃は、正確な認証保証を持つ線形分類器や、保守的な認証を持つニューラルネットワークに対して実行可能であることを示す。
論文 参考訳(メタデータ) (2022-05-20T13:07:36Z) - Smooth-Reduce: Leveraging Patches for Improved Certified Robustness [100.28947222215463]
本研究では,Smooth-Reduce の学習自由な修正スムース化手法を提案する。
提案アルゴリズムは,入力画像から抽出した重なり合うパッチを分類し,予測ロジットを集約して,入力周辺の半径が大きいことを証明する。
我々は,このような証明書の理論的保証を提供し,他のランダムな平滑化手法に対する顕著な改善を実証的に示す。
論文 参考訳(メタデータ) (2022-05-12T15:26:20Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
分割雑音を伴う非加法的決定論的平滑化法(dssn)を提案する。
一様加法平滑化とは対照的に、ssn認証は無作為なノイズコンポーネントを独立に必要としない。
これは、規範ベースの敵対的脅威モデルに対して決定論的「ランダム化平滑化」を提供する最初の仕事である。
論文 参考訳(メタデータ) (2021-03-17T21:49:53Z) - Certifying Neural Network Robustness to Random Input Noise from Samples [14.191310794366075]
入力の不確実性の存在下でのニューラルネットワークの堅牢性を証明する方法は、安全クリティカルな設定において不可欠である。
本稿では,入力雑音が任意の確率分布に従う場合に,誤分類の確率を上限とする新しいロバスト性証明法を提案する。
論文 参考訳(メタデータ) (2020-10-15T05:27:21Z) - Certifying Confidence via Randomized Smoothing [151.67113334248464]
ランダムな平滑化は、高次元の分類問題に対して良好な証明されたロバスト性を保証することが示されている。
ほとんどの平滑化法は、下層の分類器が予測する信頼性に関する情報を与えてくれない。
そこで本研究では,スムーズな分類器の予測信頼度を評価するために,認証ラジイを生成する手法を提案する。
論文 参考訳(メタデータ) (2020-09-17T04:37:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。