論文の概要: Bidirectional Time-Frequency Pyramid Network for Enhanced Robust EEG Classification
- arxiv url: http://arxiv.org/abs/2510.10004v1
- Date: Sat, 11 Oct 2025 04:14:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.732486
- Title: Bidirectional Time-Frequency Pyramid Network for Enhanced Robust EEG Classification
- Title(参考訳): 拡張ロバスト脳波分類のための双方向時間周波数ピラミッドネットワーク
- Authors: Jiahui Hong, Siqing Li, Muqing Jian, Luming Yang,
- Abstract要約: BITE(Bidirectional Time-Freq Pyramid Network)は、ロバストなマルチストリームシナジー、ピラミッド時間周波数アテンション(PTFA)、双方向適応畳み込みを特徴とするエンドツーエンドの統一アーキテクチャである。
統一アーキテクチャとして、MIタスクとSSVEPタスクの両方にわたる堅牢なパフォーマンスと、例外的な計算効率を組み合わせる。
我々の研究は、信頼性の高いBCIシステムにはスペクトル時間処理が不可欠であることを検証している。
- 参考スコア(独自算出の注目度): 2.512406961007489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing EEG recognition models suffer from poor cross-paradigm generalization due to dataset-specific constraints and individual variability. To overcome these limitations, we propose BITE (Bidirectional Time-Freq Pyramid Network), an end-to-end unified architecture featuring robust multistream synergy, pyramid time-frequency attention (PTFA), and bidirectional adaptive convolutions. The framework uniquely integrates: 1) Aligned time-frequency streams maintaining temporal synchronization with STFT for bidirectional modeling, 2) PTFA-based multi-scale feature enhancement amplifying critical neural patterns, 3) BiTCN with learnable fusion capturing forward/backward neural dynamics. Demonstrating enhanced robustness, BITE achieves state-of-the-art performance across four divergent paradigms (BCICIV-2A/2B, HGD, SD-SSVEP), excelling in both within-subject accuracy and cross-subject generalization. As a unified architecture, it combines robust performance across both MI and SSVEP tasks with exceptional computational efficiency. Our work validates that paradigm-aligned spectral-temporal processing is essential for reliable BCI systems. Just as its name suggests, BITE "takes a bite out of EEG." The source code is available at https://github.com/cindy-hong/BiteEEG.
- Abstract(参考訳): 既存のEEG認識モデルは、データセット固有の制約と個々の変動性のために、パラダイム間の一般化が貧弱である。
このような制約を克服するために,ロバストなマルチストリームシナジー,ピラミッド時間周波数アテンション(PTFA),双方向適応畳み込みを特徴とする,エンド・ツー・エンドの統一アーキテクチャであるBITE(Bidirectional Time-Freq Pyramid Network)を提案する。
このフレームワークは一意に統合される。
1 双方向モデリングのためのSTFTとの時間同期を維持するアライメント時間周波数ストリーム。
2) PTFAに基づくマルチスケール機能強化によるクリティカルニューラルパターンの増幅
3)前/後進神経力学を習得可能な融合型BiTCN。
強靭性を示すBITEは、4つの分岐パラダイム(BCICIV-2A/2B, HGD, SD-SSVEP)にまたがる最先端性能を実現し、オブジェクト内精度とクロスオブジェクト一般化の両方に優れる。
統一アーキテクチャとして、MIタスクとSSVEPタスクの両方にわたる堅牢なパフォーマンスと、例外的な計算効率を組み合わせる。
我々の研究は、信頼性の高いBCIシステムにはスペクトル時間処理が不可欠であることを検証している。
その名前が示すように、BITEは「脳波を噛み取る」。
ソースコードはhttps://github.com/cindy-hong/BiteEEG.comで入手できる。
関連論文リスト
- Electromyography-Based Gesture Recognition: Hierarchical Feature Extraction for Enhanced Spatial-Temporal Dynamics [0.7083699704958353]
本稿では, 時間的時間的特徴抽出手法として, 軽量な圧縮励起深層学習手法を提案する。
提案したモデルは、Ninapro DB2、DB4、DB5データセットでそれぞれ96.41%、92.40%、93.34%の精度でテストされた。
論文 参考訳(メタデータ) (2025-04-04T07:11:12Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
画像強調共同深度推定法は、頑健な知覚に相補的なモダリティを利用するが、一般化可能性の課題に直面している。
自己監督型転送(PST)と周波数デカップリング型フュージョンモジュール(FreDF)を提案する。
PSTは、画像基礎モデルと潜在空間アライメントによるクロスモーダルな知識伝達を確立する。
FreDFは、低周波構造成分から高周波エッジ特性を明示的に分離し、モード比周波数ミスマッチを解消する。
論文 参考訳(メタデータ) (2025-03-25T15:04:53Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
モデルバイナライゼーションは畳み込みニューラルネットワーク(CNN)のリアルタイムおよびエネルギー効率の計算を可能にした。
本稿では,バイナライズフレンドリーなハイブリッドViTアーキテクチャであるBHViTとそのバイナライズモデルを提案する。
提案アルゴリズムは,バイナリ ViT 手法間でSOTA 性能を実現する。
論文 参考訳(メタデータ) (2025-03-04T08:35:01Z) - An Efficient Self-Supervised Framework for Long-Sequence EEG Modeling [2.1232375739287006]
脳波表現学習のための自己教師型フレームワークであるEEGM2を提案する。
EEGM2は、ショートシーケンスとロングシーケンスの両方のモデリングと分類において最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-02-25T05:57:56Z) - BiT-MamSleep: Bidirectional Temporal Mamba for EEG Sleep Staging [9.917709200378217]
BiT-MamSleepは,Triple-Resolution CNN(TRCNN)を統合し,効率的なマルチスケール特徴抽出を行う新しいアーキテクチャである。
BiT-MamSleepにはAdaptive Feature Recalibration (AFR)モジュールと時間拡張ブロックが組み込まれている。
4つの公開データセットの実験は、BiT-MamSleepが最先端の手法を大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-11-03T14:49:11Z) - Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
デュアルブランチ時間スペクトル空間変換器(Dual-TSST)を用いた新しいデコードアーキテクチャネットワークを提案する。
提案するDual-TSSTは様々なタスクにおいて優れており,平均精度80.67%の脳波分類性能が期待できる。
本研究は,高性能脳波デコーディングへの新たなアプローチを提供するとともに,将来のCNN-Transformerベースのアプリケーションにも大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-09-05T05:08:43Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。