論文の概要: A Unified Frequency Domain Decomposition Framework for Interpretable and Robust Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2510.10145v1
- Date: Sat, 11 Oct 2025 09:59:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.808115
- Title: A Unified Frequency Domain Decomposition Framework for Interpretable and Robust Time Series Forecasting
- Title(参考訳): 解釈可能かつロバストな時系列予測のための統一周波数領域分解フレームワーク
- Authors: Cheng He, Xijie Liang, Zengrong Zheng, Patrick P. C. Lee, Xu Huang, Zhaoyi Li, Hong Xie, Defu Lian, Enhong Chen,
- Abstract要約: 時系列予測の現在のアプローチは、時間領域であれ周波数領域であれ、主に線形層やトランスフォーマーに基づいたディープラーニングモデルを使用する。
本稿では,多種多様な時系列を数学的に抽象化する統合周波数領域分解フレームワークFIREを提案する。
火は長期予測ベンチマークで最先端のモデルを一貫して上回る。
- 参考スコア(独自算出の注目度): 81.73338008264115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current approaches for time series forecasting, whether in the time or frequency domain, predominantly use deep learning models based on linear layers or transformers. They often encode time series data in a black-box manner and rely on trial-and-error optimization solely based on forecasting performance, leading to limited interpretability and theoretical understanding. Furthermore, the dynamics in data distribution over time and frequency domains pose a critical challenge to accurate forecasting. We propose FIRE, a unified frequency domain decomposition framework that provides a mathematical abstraction for diverse types of time series, so as to achieve interpretable and robust time series forecasting. FIRE introduces several key innovations: (i) independent modeling of amplitude and phase components, (ii) adaptive learning of weights of frequency basis components, (iii) a targeted loss function, and (iv) a novel training paradigm for sparse data. Extensive experiments demonstrate that FIRE consistently outperforms state-of-the-art models on long-term forecasting benchmarks, achieving superior predictive performance and significantly enhancing interpretability of time series
- Abstract(参考訳): 時系列予測の現在のアプローチは、時間領域であれ周波数領域であれ、主に線形層やトランスフォーマーに基づいたディープラーニングモデルを使用する。
彼らはしばしばブラックボックス方式で時系列データをエンコードし、予測性能のみに基づく試行錯誤最適化に依存し、解釈可能性と理論的理解が制限される。
さらに、時間と周波数領域におけるデータ分布のダイナミクスは、正確な予測に重要な課題を生んでいる。
本稿では,多種多様な時系列を数学的に抽象化し,解釈可能かつ堅牢な時系列予測を実現するための統合周波数領域分解フレームワークFIREを提案する。
FIREはいくつかの重要なイノベーションを紹介します。
一 振幅及び位相成分の独立モデリング
二 周波数ベース成分の重みの適応学習
(三)目標損失関数、及び
(4)スパースデータのための新しい訓練パラダイム。
広範囲な実験により、FIREは長期予測ベンチマークにおける最先端モデルよりも一貫して優れ、予測性能が優れ、時系列の解釈可能性を大幅に向上することが示された。
関連論文リスト
- Frequency-Constrained Learning for Long-Term Forecasting [15.31488551912888]
実世界の時系列は、物理法則、人間のルーチン、季節周期から生じる強い周期構造を示す。
現代の深層予測モデルは、スペクトルバイアスと周波数認識による誘導前兆の欠如により、繰り返し発生するパターンを捉えることができないことが多い。
本稿では,周期性を明示的にモデル化し,長期予測を効果的に行う手法を提案する。
論文 参考訳(メタデータ) (2025-08-02T22:12:15Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift [51.01356105618118]
時系列はしばしば、季節、動作条件、意味的な意味など、セグメントごとに異なるパターンを持つ複雑な非一様分布を示す。
既存のアプローチでは、通常、これらのさまざまなパターンをキャプチャするために単一のモデルをトレーニングするが、しばしばパッチ間のパターンのドリフトに苦労する。
より正確で適応可能な時系列予測にパターン特化の専門家を活用する新しいアーキテクチャであるTFPSを提案する。
論文 参考訳(メタデータ) (2024-10-13T13:35:29Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。