論文の概要: Guided Image Feature Matching using Feature Spatial Order
- arxiv url: http://arxiv.org/abs/2510.10414v1
- Date: Sun, 12 Oct 2025 02:41:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.928323
- Title: Guided Image Feature Matching using Feature Spatial Order
- Title(参考訳): 特徴空間順序を用いたガイド画像特徴マッチング
- Authors: Chin-Hung Teng, Ben-Jian Dong,
- Abstract要約: 特徴空間順序は、一対の特徴が正しい確率を推定することができる。
我々は最初に一致した特徴のいくつかを使って特徴空間秩序の計算モデルを構築している。
また、エピポーラ幾何学と統合して、マッチング効率と精度をさらに向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image feature matching plays a vital role in many computer vision tasks. Although many image feature detection and matching techniques have been proposed over the past few decades, it is still time-consuming to match feature points in two images, especially for images with a large number of detected features. Feature spatial order can estimate the probability that a pair of features is correct. Since it is a completely independent concept from epipolar geometry, it can be used to complement epipolar geometry in guiding feature match in a target region so as to improve matching efficiency. In this paper, we integrate the concept of feature spatial order into a progressive matching framework. We use some of the initially matched features to build a computational model of feature spatial order and employs it to calculates the possible spatial range of subsequent feature matches, thus filtering out unnecessary feature matches. We also integrate it with epipolar geometry to further improve matching efficiency and accuracy. Since the spatial order of feature points is affected by image rotation, we propose a suitable image alignment method from the fundamental matrix of epipolar geometry to remove the effect of image rotation. To verify the feasibility of the proposed method, we conduct a series of experiments, including a standard benchmark dataset, self-generated simulated images, and real images. The results demonstrate that our proposed method is significantly more efficient and has more accurate feature matching than the traditional method.
- Abstract(参考訳): 画像特徴マッチングは多くのコンピュータビジョンタスクにおいて重要な役割を果たす。
過去数十年間、多くの画像特徴の検出とマッチング技術が提案されてきたが、2つの画像の特徴点、特に多数の検出された特徴を持つ画像に一致させるのにはまだ時間がかかる。
特徴空間順序は、一対の特徴が正しい確率を推定することができる。
エピポーラ幾何学から完全に独立した概念であるため、ターゲット領域における特徴マッチングを導く際に、エピポーラ幾何学を補完し、マッチング効率を向上させるために使うことができる。
本稿では,特徴空間秩序の概念をプログレッシブマッチングフレームワークに統合する。
当初一致した特徴のいくつかを特徴空間秩序の計算モデルの構築に利用し、それを用いてその後の特徴マッチングの空間範囲を計算し、不必要な特徴マッチングをフィルタリングする。
また、エピポーラ幾何学と統合して、マッチング効率と精度をさらに向上する。
特徴点の空間的順序は画像回転の影響を受けやすいため,画像回転の影響を取り除くために,エピポーラ幾何学の基本行列から適切な画像アライメント法を提案する。
提案手法の有効性を検証するため,標準ベンチマークデータセット,自己生成型シミュレーション画像,実画像など,一連の実験を行った。
その結果,提案手法は従来手法よりも効率が良く,特徴マッチングの精度も高いことがわかった。
関連論文リスト
- Geometry-Aware Feature Matching for Large-Scale Structure from Motion [10.645087195983201]
大規模シナリオでは重なりが小さい場合にギャップを埋めるために,カラーキューに加えて幾何学的手がかりを導入する。
提案手法は, 検出器フリー法からの高密度対応が幾何的に整合性を持ち, 精度が高いことを保証する。
ベンチマークデータセットにおける最先端の機能マッチングメソッドよりも優れています。
論文 参考訳(メタデータ) (2024-09-03T21:41:35Z) - Pentagon-Match (PMatch): Identification of View-Invariant Planar Feature
for Local Feature Matching-Based Homography Estimation [2.240487187855135]
コンピュータビジョンにおいて、画像間の正確な点対応を見つけることは、画像縫合、画像検索、視覚的位置決めなど、多くのアプリケーションにおいて重要な役割を担っている。
これらの研究の多くは、RANSACのようなサンプリング手法が使われる前に局所的な特徴のマッチングに焦点を合わせ、初期マッチング結果の検証を行う。
ペンタゴン・マッチ (Pentagon-Match, PMatch) は、ペンタゴンをランダムにサンプリングし、初期一致したキーポイントの正当性を検証するために提案される。
論文 参考訳(メタデータ) (2023-05-27T12:41:23Z) - Explicit Correspondence Matching for Generalizable Neural Radiance Fields [66.99907718824782]
本稿では,新たな未知のシナリオに一般化し,2つのソースビューで新規なビュー合成を行う新しいNeRF手法を提案する。
明瞭な対応マッチングは、異なるビュー上の3Dポイントの2次元投影でサンプリングされた画像特徴間のコサイン類似度と定量化される。
実験では,実験結果から得られたコサイン特徴の類似性と体積密度との間に強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-04-24T17:46:01Z) - Adaptive Assignment for Geometry Aware Local Feature Matching [22.818457285745733]
検出不要な特徴マッチングアプローチは、その優れたパフォーマンスのおかげで、現在大きな注目を集めている。
本稿では,AdaMatcherについて紹介する。AdaMatcherは特徴相関と協調可視領域推定を,精巧な特徴相互作用モジュールを通じて実現する。
次に、AdaMatcherは、画像間のスケールを推定しながらパッチレベルのマッチングに適応的な割り当てを行い、最後に、スケールアライメントとサブピクセルレグレッションモジュールを通じて、コビジブルマッチングを洗練する。
論文 参考訳(メタデータ) (2022-07-18T08:22:18Z) - Correlation-Aware Deep Tracking [83.51092789908677]
本稿では,自己/横断的意図に着想を得た,新たなターゲット依存型特徴ネットワークを提案する。
我々のネットワークは機能ネットワークの複数の層にクロスイメージの特徴相関を深く埋め込んでいる。
我々のモデルは、豊富な未ペア画像に対して柔軟に事前訓練が可能であり、既存の手法よりも顕著に高速な収束をもたらす。
論文 参考訳(メタデータ) (2022-03-03T11:53:54Z) - SAR image matching algorithm based on multi-class features [0.27624021966289597]
合成開口レーダは24/7と24/7の動作が可能で、適用価値が高い。
マッチングアルゴリズムのロバスト性を高めるために,主に直線と領域という2種類の特徴を用いて,マルチクラス特徴に基づく新しいSAR画像マッチングアルゴリズムを提案する。
実験結果から,本アルゴリズムは高精度なマッチング結果を得ることができ,正確な目標位置決めが可能であり,視点や照明の変化に優れたロバスト性を有することを確認した。
論文 参考訳(メタデータ) (2021-08-13T01:07:51Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z) - Geometrically Mappable Image Features [85.81073893916414]
地図内のエージェントの視覚に基づくローカライゼーションは、ロボット工学とコンピュータビジョンにおいて重要な問題である。
本稿では,画像検索を対象とした画像特徴学習手法を提案する。
論文 参考訳(メタデータ) (2020-03-21T15:36:38Z) - Multi-View Optimization of Local Feature Geometry [70.18863787469805]
本研究では,複数視点からの局所像の特徴の幾何を,未知のシーンやカメラの幾何を伴わずに精査する問題に対処する。
提案手法は,従来の特徴抽出とマッチングのパラダイムを自然に補完する。
本手法は,手作りと学習の両方の局所的特徴に対して,三角測量とカメラのローカライゼーション性能を常に向上することを示す。
論文 参考訳(メタデータ) (2020-03-18T17:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。