論文の概要: SAR image matching algorithm based on multi-class features
- arxiv url: http://arxiv.org/abs/2108.06009v4
- Date: Mon, 6 May 2024 09:27:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 20:52:38.086714
- Title: SAR image matching algorithm based on multi-class features
- Title(参考訳): マルチクラス特徴量に基づくSAR画像マッチングアルゴリズム
- Authors: Mazhi Qiang, Fengming Zhou,
- Abstract要約: 合成開口レーダは24/7と24/7の動作が可能で、適用価値が高い。
マッチングアルゴリズムのロバスト性を高めるために,主に直線と領域という2種類の特徴を用いて,マルチクラス特徴に基づく新しいSAR画像マッチングアルゴリズムを提案する。
実験結果から,本アルゴリズムは高精度なマッチング結果を得ることができ,正確な目標位置決めが可能であり,視点や照明の変化に優れたロバスト性を有することを確認した。
- 参考スコア(独自算出の注目度): 0.27624021966289597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic aperture radar has the ability to work 24/7 and 24/7, and has high application value. Propose a new SAR image matching algorithm based on multi class features, mainly using two different types of features: straight lines and regions to enhance the robustness of the matching algorithm; On the basis of using prior knowledge of images, combined with LSD (Line Segment Detector) line detection and template matching algorithm, by analyzing the attribute correlation between line and surface features in SAR images, selecting line and region features in SAR images to match the images, the matching accuracy between SAR images and visible light images is improved, and the probability of matching errors is reduced. The experimental results have verified that this algorithm can obtain high-precision matching results, achieve precise target positioning, and has good robustness to changes in perspective and lighting. The results are accurate and false positives are controllable.
- Abstract(参考訳): 合成開口レーダは24/7と24/7の動作が可能であり、高い適用価値を有する。
マッチングアルゴリズムの堅牢性を高めるために直線と領域の2つの異なる特徴を用いる新しいSAR画像マッチングアルゴリズムを提案する;画像の事前知識とLCD(Line Segment Detector)ライン検出とテンプレートマッチングアルゴリズムを併用することにより、SAR画像のライン特徴と表面特徴の属性相関を解析し、SAR画像のライン特徴と領域特徴を選択して画像に一致するようにすることにより、SAR画像と可視光画像とのマッチング精度を向上し、マッチングエラーの確率を低減する。
実験結果から,本アルゴリズムは高精度なマッチング結果を得ることができ,正確な目標位置決めが可能であり,視点や照明の変化に優れたロバスト性を有することを確認した。
結果は正確であり、偽陽性は制御可能である。
関連論文リスト
- DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
複雑な撮像条件による空間変動のため,HSI分類は困難である。
本稿では,HSIを高品質な三スペクトル画像に変換する三スペクトル画像生成パイプラインを提案する。
提案手法は,HSI分類における最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-04-19T18:32:52Z) - A Fast Feature Point Matching Algorithm Based on IMU Sensor [8.118281887577439]
同時ローカライゼーションとマッピング(SLAM)では、画像特徴点マッチングプロセスが多くの時間を消費する。
画像特徴点マッチングの効率を最適化するために慣性測定ユニット(IMU)を用いるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-03T03:52:12Z) - Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images [7.428474910083337]
本稿では,非剛性画像対応タスクの正マッチ数を最大化するために,新しい学習キーポイント検出手法を提案する。
我々のトレーニングフレームワークは、アノテートされた画像対と予め定義された記述子抽出器をマッチングして得られる真の対応を利用して、畳み込みニューラルネットワーク(CNN)を訓練する。
実験の結果,本手法は平均整合精度で20時までに非剛体物体の実像に対して,最先端のキーポイント検出器よりも優れていた。
論文 参考訳(メタデータ) (2022-12-13T11:59:09Z) - Textural-Structural Joint Learning for No-Reference Super-Resolution
Image Quality Assessment [59.91741119995321]
我々は、TSNetと呼ばれる品質予測のためのテキスト情報と構造情報を共同で探索するデュアルストリームネットワークを開発した。
画像の重要な領域に注意を払っている人間の視覚システム(HVS)を模倣することにより、視覚に敏感な領域をより区別しやすくするための空間的注意機構を開発する。
実験の結果,提案したTSNetは現状のIQA法よりも視覚的品質を正確に予測し,人間の視点との整合性を示した。
論文 参考訳(メタデータ) (2022-05-27T09:20:06Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - Denoising and Optical and SAR Image Classifications Based on Feature
Extraction and Sparse Representation [0.0]
本稿では,光学画像とSAR画像の分類を識別し,特徴抽出し,比較する手法を提案する。
光画像データは、リモートセンシングの作業員によって、容易に解釈できるため、土地利用と被覆について調査するために使われてきた。
論文 参考訳(メタデータ) (2021-06-03T14:39:30Z) - Tone Mapping Based on Multi-scale Histogram Synthesis [6.6399785438250705]
本稿では,低ダイナミックレンジ(LDR)デバイスにワイドダイナミックレンジ(WDR)画像を表示できる新しいトーンマッピングアルゴリズムを提案する。
提案アルゴリズムは,視覚系の対数応答と局所適応特性を主目的とする。
実験結果から,提案アルゴリズムは高輝度,良コントラスト,魅力的な画像を生成することができることがわかった。
論文 参考訳(メタデータ) (2021-01-31T08:11:48Z) - Cross-Spectral Periocular Recognition with Conditional Adversarial
Networks [59.17685450892182]
本研究では,近赤外・近赤外スペクトル間の近赤外画像の変換を訓練した条件付き生成逆相関ネットワークを提案する。
EER=1%, GAR>99% @ FAR=1%, ポリUデータベースの最先端技術に匹敵するスペクトル近視性能を得た。
論文 参考訳(メタデータ) (2020-08-26T15:02:04Z) - Single Image Brightening via Multi-Scale Exposure Fusion with Hybrid
Learning [48.890709236564945]
小さいISOと小さな露光時間は、通常、背面または低い光条件下で画像をキャプチャするために使用される。
本稿では、そのような画像を明るくするために、単一の画像輝度化アルゴリズムを提案する。
提案アルゴリズムは,露出時間が大きい2つの仮想画像を生成するための,ユニークなハイブリッド学習フレームワークを含む。
論文 参考訳(メタデータ) (2020-07-04T08:23:07Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
我々は,画像領域間の最適なマッチングの新しい視点から,少数ショット画像分類法を開発した。
我々は、高密度画像表現間の構造距離を計算するために、Earth Mover's Distance (EMD) を用いている。
定式化において重要な要素の重みを生成するために,我々は相互参照機構を設計する。
論文 参考訳(メタデータ) (2020-03-15T08:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。