論文の概要: Deep semi-supervised approach based on consistency regularization and similarity learning for weeds classification
- arxiv url: http://arxiv.org/abs/2510.10573v1
- Date: Sun, 12 Oct 2025 12:45:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:30.016277
- Title: Deep semi-supervised approach based on consistency regularization and similarity learning for weeds classification
- Title(参考訳): 雑草分類のための一貫性規則化と類似性学習に基づく深い半教師付きアプローチ
- Authors: Farouq Benchallal, Adel Hafiane, Nicolas Ragot, Raphael Canals,
- Abstract要約: 雑草の識別は、作物との共通性や種別の違いに関連する多様性のため、難しい問題である。
ディープラーニングベースの手法を十分に活用するには、大きな完全な注釈付きデータセットが必要である。
整合性正規化と類似性学習を組み合わせた深層半教師付きアプローチを提案する。
- 参考スコア(独自算出の注目度): 3.9023554886892438
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Weed species classification represents an important step for the development of automated targeting systems that allow the adoption of precision agriculture practices. To reduce costs and yield losses caused by their presence. The identification of weeds is a challenging problem due to their shared similarities with crop plants and the variability related to the differences in terms of their types. Along with the variations in relation to changes in field conditions. Moreover, to fully benefit from deep learning-based methods, large fully annotated datasets are needed. This requires time intensive and laborious process for data labeling, which represents a limitation in agricultural applications. Hence, for the aim of improving the utilization of the unlabeled data, regarding conditions of scarcity in terms of the labeled data available during the learning phase and provide robust and high classification performance. We propose a deep semi-supervised approach, that combines consistency regularization with similarity learning. Through our developed deep auto-encoder architecture, experiments realized on the DeepWeeds dataset and inference in noisy conditions demonstrated the effectiveness and robustness of our method in comparison to state-of-the-art fully supervised deep learning models. Furthermore, we carried out ablation studies for an extended analysis of our proposed joint learning strategy.
- Abstract(参考訳): 雑草種分類は、精密農業プラクティスの採用を可能にする自動ターゲティングシステムの開発において重要なステップである。
コストを低減し、その存在による損失を低減させる。
雑草の識別は、作物との共通性や種別の違いに関連する多様性のため、難しい問題である。
フィールド条件の変化に関しての変化とともに。
さらに、ディープラーニングベースの手法を十分に活用するためには、大規模な完全注釈付きデータセットが必要である。
これは、農業応用の限界を表すデータラベリングに時間と労力を要する。
したがって、未ラベルデータの利用を改善するため、学習期間中に利用可能なラベル付きデータの不足条件を考慮し、堅牢で高い分類性能を提供する。
整合性正規化と類似性学習を組み合わせた深層半教師付きアプローチを提案する。
開発したDeep-Encoderアーキテクチャを通じて,DeepWeedsデータセット上で実現された実験と雑音条件下での推論により,最先端の完全教師付きディープラーニングモデルと比較して,本手法の有効性と堅牢性を示した。
さらに,提案した共同学習戦略を拡張分析するためのアブレーション研究を行った。
関連論文リスト
- Robust Molecular Property Prediction via Densifying Scarce Labeled Data [53.24886143129006]
薬物発見において、研究を進める上で最も重要な化合物は、しばしば訓練セットを越えている。
本稿では, ラベル付きデータを利用して, 分布内データ(ID)と分布外データ(OOD)を補間する2段階最適化手法を提案する。
論文 参考訳(メタデータ) (2025-06-13T15:27:40Z) - Semi-Supervised Weed Detection for Rapid Deployment and Enhanced Efficiency [2.8444649426160304]
本稿では,2つの主要成分からなる半教師付き雑草検出手法を提案する。
まず,異なる規模の雑草の特徴を捉えるために,マルチスケールの特徴表現手法を用いる。
第2に、トレーニング中にラベル付き画像の小さなセットを活用する適応的な擬似ラベル割り当て戦略を提案する。
論文 参考訳(メタデータ) (2024-05-12T23:34:06Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Semi-supervised Deep Learning for Image Classification with Distribution
Mismatch: A Survey [1.5469452301122175]
ディープラーニングモデルは、予測モデルをトレーニングするためにラベル付き観測の豊富な部分に依存します。
ラベル付きデータ観測を収集することは高価であり、ディープラーニングモデルの使用は理想的ではない。
多くの状況では、異なる非競合データソースが利用可能である。
これにより、ラベル付きデータセットと非ラベル付きデータセットの間にかなりの分散ミスマッチが発生するリスクが生じる。
論文 参考訳(メタデータ) (2022-03-01T02:46:00Z) - An Experimental Study of Data Heterogeneity in Federated Learning
Methods for Medical Imaging [8.984706828657814]
フェデレーション学習は、複数の機関が、プライバシー保護の方法で、ローカルデータ上で機械学習モデルを協調的にトレーニングすることを可能にする。
本研究では,データ不均一性の分類体系が,量スキュー,ラベル分布スキュー,画像取得スキューなどのフェデレーション学習方法に与える影響について検討した。
本稿では,データ量スキューの重み付き平均値,重み付き損失量,ラベル分布スキューのバッチ正規化平均値など,データの不均一性からの性能低下を克服するいくつかの緩和策を提案する。
論文 参考訳(メタデータ) (2021-07-18T05:47:48Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Deep Stable Learning for Out-Of-Distribution Generalization [27.437046504902938]
深層ニューラルネットワークに基づくアプローチは、同様の分布を持つデータとトレーニングデータをテストする際に顕著なパフォーマンスを達成した。
トレーニングとテストデータ間の分散シフトの影響を排除することは、パフォーマンス向上の深層モデルの構築に不可欠です。
トレーニングサンプルの学習重みによる特徴間の依存関係を除去し,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2021-04-16T03:54:21Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-06-15T10:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。