論文の概要: SemCSE-Multi: Multifaceted and Decodable Embeddings for Aspect-Specific and Interpretable Scientific Domain Mapping
- arxiv url: http://arxiv.org/abs/2510.11599v1
- Date: Mon, 13 Oct 2025 16:38:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:30.460652
- Title: SemCSE-Multi: Multifaceted and Decodable Embeddings for Aspect-Specific and Interpretable Scientific Domain Mapping
- Title(参考訳): SemCSE-Multi:Aspect-Specific and Interpretable Scientific Domain Mappingのための多面的および分解可能な埋め込み
- Authors: Marc Brinner, Sina Zarrieß,
- Abstract要約: SemCSE-Multiは、科学的な抽象物の多面的な埋め込みを生成するための教師なしのフレームワークである。
提案手法は,アスペクト固有の要約文を生成し,埋め込みモデルを訓練する教師なしの手順に依存する。
埋め込みを関連する側面の自然言語記述に復号する埋め込み復号パイプラインを導入する。
- 参考スコア(独自算出の注目度): 9.883465814768547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose SemCSE-Multi, a novel unsupervised framework for generating multifaceted embeddings of scientific abstracts, evaluated in the domains of invasion biology and medicine. These embeddings capture distinct, individually specifiable aspects in isolation, thus enabling fine-grained and controllable similarity assessments as well as adaptive, user-driven visualizations of scientific domains. Our approach relies on an unsupervised procedure that produces aspect-specific summarizing sentences and trains embedding models to map semantically related summaries to nearby positions in the embedding space. We then distill these aspect-specific embedding capabilities into a unified embedding model that directly predicts multiple aspect embeddings from a scientific abstract in a single, efficient forward pass. In addition, we introduce an embedding decoding pipeline that decodes embeddings back into natural language descriptions of their associated aspects. Notably, we show that this decoding remains effective even for unoccupied regions in low-dimensional visualizations, thus offering vastly improved interpretability in user-centric settings.
- Abstract(参考訳): 本稿では, 侵襲生物学と医学の領域で評価された, 科学的な抽象化の多面的埋め込みを生成するための, 教師なしのフレームワークSemCSE-Multiを提案する。
これらの埋め込みは、個別に特定できる独立した側面を捉え、よりきめ細やかで制御可能な類似性の評価と、科学的領域の適応的でユーザ主導の可視化を可能にする。
提案手法は, アスペクト固有の要約文を生成し, 埋め込みモデルを用いて, 意味論的に関連する要約を, 埋め込み空間内の近傍位置へマッピングする。
次に、これらのアスペクト固有の埋め込み機能を統合埋め込みモデルに蒸留し、科学的な抽象概念から単一の効率的なフォワードパスへの複数のアスペクト埋め込みを直接予測する。
さらに、埋め込みを関連する側面の自然言語記述に復号する埋め込み復号パイプラインを導入する。
特に, この復号化は低次元の可視化において, 未占有領域においても有効であり, ユーザ中心の設定における解釈可能性を大幅に改善することを示す。
関連論文リスト
- Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation [30.524999223901645]
完全教師なし方式で生成されるアノテーション効率のよいプロンプトを利用するSAM(Segment Anything Model)フレームワークを提案する。
我々は、モデルが高忠実度セグメンテーションを生成できるように最適なポリシーを設計するために、直接選好最適化手法を採用する。
X線, 超音波, 腹部CTなど多彩な領域にわたる肺分節, 乳房腫瘍分節, 臓器分節などのタスクにおける我々のフレームワークの最先端性能は, 低アノテーションデータシナリオにおけるその有効性を正当化するものである。
論文 参考訳(メタデータ) (2025-03-06T17:28:48Z) - Disentangling Dense Embeddings with Sparse Autoencoders [0.0]
スパースオートエンコーダ(SAE)は、複雑なニューラルネットワークから解釈可能な特徴を抽出する可能性を示している。
大規模言語モデルからの高密度テキスト埋め込みに対するSAEの最初の応用の1つを提示する。
その結果,解釈可能性を提供しながら意味的忠実さを保っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-08-01T15:46:22Z) - Unified Domain Adaptive Semantic Segmentation [105.05235403072021]
Unsupervised Adaptive Domain Semantic (UDA-SS)は、ラベル付きソースドメインからラベル付きターゲットドメインに監督を移すことを目的としている。
本稿では,特徴量と特徴量との相違に対処するQuad-directional Mixup(QuadMix)法を提案する。
提案手法は,4つの挑戦的UDA-SSベンチマークにおいて,最先端の成果を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2023-11-22T09:18:49Z) - Multi-granularity Interaction Simulation for Unsupervised Interactive
Segmentation [38.08152990071453]
我々は、教師なし対話的セグメンテーションのための有望な方向を開くために、MIS(Multi-granularity Interaction Simulation)アプローチを導入する。
我々のMISは、非深層学習の非教師付き手法よりも優れており、アノテーションを使わずに従来の深層教師付き手法と同等である。
論文 参考訳(メタデータ) (2023-03-23T16:19:43Z) - Discovering Class-Specific GAN Controls for Semantic Image Synthesis [73.91655061467988]
本稿では,事前訓練されたSISモデルの潜在空間において,空間的に不整合なクラス固有方向を求める新しい手法を提案する。
提案手法によって検出される潜在方向は,セマンティッククラスの局所的な外観を効果的に制御できることを示す。
論文 参考訳(メタデータ) (2022-12-02T21:39:26Z) - Support-set based Multi-modal Representation Enhancement for Video
Captioning [121.70886789958799]
サンプル間で共有されるセマンティックサブ空間において、リッチな情報をマイニングするためのサポートセットベースのマルチモーダル表現拡張(SMRE)モデルを提案する。
具体的には、サンプル間の基礎となる関係を学習し、意味的関連視覚要素を得るためのサポートセットを構築するためのサポートセット構築(SC)モジュールを提案する。
本研究では,SST(Semantic Space Transformation)モジュールを設計し,相対距離を制約し,マルチモーダルインタラクションを自己管理的に管理する。
論文 参考訳(メタデータ) (2022-05-19T03:40:29Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
訓練された条件付き変分オートエンコーダの離散潜時空間をスパース化する問題を考察する。
顕在的理論を用いて、特定の入力条件から直接証拠を受け取る潜在クラスを特定し、そうでないクラスをフィルタリングする。
画像生成や人間の行動予測などの多様なタスクの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-19T01:27:21Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。