論文の概要: A Comprehensive Survey of Website Fingerprinting Attacks and Defenses in Tor: Advances and Open Challenges
- arxiv url: http://arxiv.org/abs/2510.11804v1
- Date: Mon, 13 Oct 2025 18:03:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 19:02:32.050507
- Title: A Comprehensive Survey of Website Fingerprinting Attacks and Defenses in Tor: Advances and Open Challenges
- Title(参考訳): TorにおけるWebサイトのフィンガープリント攻撃と防御に関する包括的調査:進展と課題
- Authors: Yuwen Cui, Guangjing Wang, Khanh Vu, Kai Wei, Kehan Shen, Zhengyuan Jiang, Xiao Han, Ning Wang, Zhuo Lu, Yao Liu,
- Abstract要約: Torネットワークは、複数のリレーを介してインターネットトラフィックをルーティングすることで、強力な匿名性を提供する。
Torはトラフィックを暗号化してIPアドレスを隠すが、Webサイトフィンガープリント(WF)攻撃のようなトラフィック分析攻撃には弱いままである。
本稿では,既存のWF研究を,データセット,アタックモデル,防衛機構の3つの重要な領域に分類する。
- 参考スコア(独自算出の注目度): 16.146321899546216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Tor network provides users with strong anonymity by routing their internet traffic through multiple relays. While Tor encrypts traffic and hides IP addresses, it remains vulnerable to traffic analysis attacks such as the website fingerprinting (WF) attack, achieving increasingly high fingerprinting accuracy even under open-world conditions. In response, researchers have proposed a variety of defenses, ranging from adaptive padding, traffic regularization, and traffic morphing to adversarial perturbation, that seek to obfuscate or reshape traffic traces. However, these defenses often entail trade-offs between privacy, usability, and system performance. Despite extensive research, a comprehensive survey unifying WF datasets, attack methodologies, and defense strategies remains absent. This paper fills that gap by systematically categorizing existing WF research into three key domains: datasets, attack models, and defense mechanisms. We provide an in-depth comparative analysis of techniques, highlight their strengths and limitations under diverse threat models, and discuss emerging challenges such as multi-tab browsing and coarse-grained traffic features. By consolidating prior work and identifying open research directions, this survey serves as a foundation for advancing stronger privacy protection in Tor.
- Abstract(参考訳): Torネットワークは、複数のリレーを介してインターネットトラフィックをルーティングすることで、強力な匿名性を提供する。
Torはトラフィックを暗号化してIPアドレスを隠すが、Webサイトフィンガープリント(WF)攻撃のようなトラフィック分析攻撃に弱いままであり、オープンワールド条件下でも指紋認証の精度が向上している。
これに対し、研究者らは、適応的なパディング、交通規則化、交通形態変化から反対方向の摂動まで、様々な防御策を提案しており、交通の痕跡を解き明かしたり、形を変えたりすることを試みている。
しかしながら、これらの防御は、プライバシ、ユーザビリティ、システムパフォーマンスの間のトレードオフを伴うことが多い。
広範な研究にもかかわらず、WFデータセットの統合、攻撃方法、防衛戦略の総合的な調査はいまだに残っていない。
本稿では,既存のWF研究を,データセット,アタックモデル,防衛機構の3つの重要な領域に体系的に分類することで,そのギャップを埋める。
本稿では,テクニックの詳細な比較分析を行い,多様な脅威モデルの下での強みと限界を強調し,マルチタブブラウジングや粗いトラフィック機能といった新たな課題について議論する。
事前の作業の統合とオープンな研究方向の特定により、この調査はTorのプライバシー保護強化の基礎となる。
関連論文リスト
- Searching for Privacy Risks in LLM Agents via Simulation [61.229785851581504]
本稿では,プライバシクリティカルなエージェントインタラクションのシミュレーションを通じて,攻撃と防御戦略の改善を交互に行う検索ベースのフレームワークを提案する。
攻撃戦略は、直接の要求から、不正行為や同意偽造といった高度な戦術へとエスカレートする。
発見された攻撃と防御は、さまざまなシナリオやバックボーンモデルにまたがって伝達され、プライバシーに配慮したエージェントを構築するための強力な実用性を示している。
論文 参考訳(メタデータ) (2025-08-14T17:49:09Z) - A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
敵対的攻撃、特にディープラーニングモデルの脆弱性を狙った攻撃は、サイバーセキュリティに対するニュアンスで重大な脅威となる。
本研究は,データポジショニング,テストタイムエベイション,リバースエンジニアリングなど,敵対的な学習の脅威について論じる。
我々の研究は、敵の攻撃によって引き起こされるネットワークセキュリティとプライバシの潜在的な侵害に対処するための防御メカニズムを強化するための基盤となる。
論文 参考訳(メタデータ) (2024-12-18T14:21:46Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - A Survey on the Application of Generative Adversarial Networks in Cybersecurity: Prospective, Direction and Open Research Scopes [1.3631461603291568]
GAN(Generative Adversarial Networks)は、常に変化するセキュリティ問題に対処する強力なソリューションとして登場した。
本研究は, サイバーセキュリティの防衛強化において, GANを的確に捉えた深層学習モデルの重要性について検討した。
焦点は、これらのドメインにおけるサイバーセキュリティの防御を強化するために、GANがいかに影響力のあるツールになり得るかを調べることである。
論文 参考訳(メタデータ) (2024-07-11T19:51:48Z) - Privacy Leakage on DNNs: A Survey of Model Inversion Attacks and Defenses [40.77270226912783]
Model Inversion(MI)攻撃は、トレーニングされたモデルへのアクセスを悪用することで、トレーニングデータセットに関するプライベート情報を開示する。
この分野の急速な進歩にもかかわらず、我々は既存のMI攻撃と防衛の包括的かつ体系的な概要を欠いている。
我々は,近年のDeep Neural Networks(DNN)に対する攻撃と防御を,複数のモダリティと学習タスクで詳細に分析し,比較する。
論文 参考訳(メタデータ) (2024-02-06T14:06:23Z) - Genetic Algorithm-Based Dynamic Backdoor Attack on Federated
Learning-Based Network Traffic Classification [1.1887808102491482]
本稿では,GABAttackを提案する。GABAttackは,ネットワークトラフィック分類のためのフェデレーション学習に対する新しい遺伝的アルゴリズムに基づくバックドア攻撃である。
この研究は、ネットワークセキュリティの専門家や実践者がこのような攻撃に対して堅牢な防御策を開発するための警告となる。
論文 参考訳(メタデータ) (2023-09-27T14:02:02Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Efficient and Low Overhead Website Fingerprinting Attacks and Defenses
based on TCP/IP Traffic [16.6602652644935]
機械学習とディープラーニングに基づくWebサイトのフィンガープリント攻撃は、攻撃率の良好なパフォーマンスを達成するために最も典型的な特徴を使用する傾向がある。
このような攻撃に対して、高コストのネットワークオーバーヘッドでランダムパケット防御(RPD)を適用するのが一般的である。
本稿では、TCP/IPトラフィックの統計的特性を用いて、入射雑音を除去できるRFDに対するフィルタ支援攻撃を提案する。
トラフィック分割機構によってリストベースの防御をさらに改善し、上記の攻撃と戦うことができ、ネットワークオーバーヘッドをかなり節約することができる。
論文 参考訳(メタデータ) (2023-02-27T13:45:15Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。