論文の概要: MammoDINO: Anatomically Aware Self-Supervision for Mammographic Images
- arxiv url: http://arxiv.org/abs/2510.11883v1
- Date: Mon, 13 Oct 2025 19:44:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 19:02:32.077604
- Title: MammoDINO: Anatomically Aware Self-Supervision for Mammographic Images
- Title(参考訳): マンモジノ:マンモグラフィー画像のための解剖学的自己スーパービジョン
- Authors: Sicheng Zhou, Lei Wu, Cao Xiao, Parminder Bhatia, Taha Kass-Hout,
- Abstract要約: 自己教師あり学習(SSL)は、一般的な領域でエンコーダの視覚訓練に変化をもたらしたが、医用画像では未利用のままである。
マンモグラフィーのための新しいSSLフレームワークであるMammoDinoを,140万枚のマンモグラフィー画像で事前訓練した。
- 参考スコア(独自算出の注目度): 27.48876819359413
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Self-supervised learning (SSL) has transformed vision encoder training in general domains but remains underutilized in medical imaging due to limited data and domain specific biases. We present MammoDINO, a novel SSL framework for mammography, pretrained on 1.4 million mammographic images. To capture clinically meaningful features, we introduce a breast tissue aware data augmentation sampler for both image-level and patch-level supervision and a cross-slice contrastive learning objective that leverages 3D digital breast tomosynthesis (DBT) structure into 2D pretraining. MammoDINO achieves state-of-the-art performance on multiple breast cancer screening tasks and generalizes well across five benchmark datasets. It offers a scalable, annotation-free foundation for multipurpose computer-aided diagnosis (CAD) tools for mammogram, helping reduce radiologists' workload and improve diagnostic efficiency in breast cancer screening.
- Abstract(参考訳): 自己教師付き学習(SSL)は、一般的なドメインでの視覚エンコーダ訓練を変革してきたが、限られたデータとドメイン固有のバイアスのために医療画像では未利用のままである。
マンモグラフィーのための新しいSSLフレームワークであるMammoDinoを,140万枚のマンモグラフィー画像で事前訓練した。
臨床的に有意義な特徴を捉えるために,画像レベルとパッチレベルの両方の監視のための乳房組織認識データ拡張サンプリングと,3次元デジタル乳房トモシンセシス(DBT)構造を2次元事前学習に活用するクロススライス・コントラスト学習の目的を導入する。
MammoDINOは、複数の乳がんスクリーニングタスクで最先端のパフォーマンスを達成し、5つのベンチマークデータセットでうまく一般化する。
マンモグラフィーのための多目的コンピュータ支援診断(CAD)ツールのためのスケーラブルでアノテーションのない基盤を提供し、放射線医の作業量を減らし、乳がん検診の診断効率を向上させる。
関連論文リスト
- Panoptic Segmentation of Mammograms with Text-To-Image Diffusion Model [1.2130800774416757]
視覚言語拡散モデルは、様々な下流タスクに対する画像生成と転送性において顕著な性能を示した。
本稿では,安定拡散モデルから最新のパン光学セグメントアーキテクチャへの入力として,事前学習した特徴を活用することを提案する。
論文 参考訳(メタデータ) (2024-07-19T14:04:05Z) - MammoDG: Generalisable Deep Learning Breaks the Limits of Cross-Domain
Multi-Center Breast Cancer Screening [4.587250201300601]
マンモグラフィーは高い変動性とマンモグラフィーのパターンのために課題を提起する。
MammoDGはクロスドメインマルチセンターマンモグラフィーデータの汎用的で信頼性の高い解析のための新しいディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2023-08-02T10:10:22Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
本稿では,ピクセルレベルの情報を高レベルなセマンティクスに明示的にエンコードするための画素復元タスクを提案する。
また,画像理解を支援する強力なツールであるスケール情報の保存についても検討する。
提案されている統合SSLフレームワークは、さまざまなタスクで自己管理されたフレームワークを超越している。
論文 参考訳(メタデータ) (2023-01-02T17:47:27Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - VinDr-Mammo: A large-scale benchmark dataset for computer-aided
diagnosis in full-field digital mammography [0.5452925161262461]
VinDr-Mammoはフルフィールドデジタルマンモグラフィー(FFDM)の新しいベンチマークデータセットである
データセットは5000のマンモグラフィー試験で構成され、それぞれが4つの標準ビューを持ち、意見の相違を伴って読み上げられている。
乳房画像報告・データシステム(BI-RADS)と乳房レベルの密度を評価するために作成される。
論文 参考訳(メタデータ) (2022-03-20T18:17:42Z) - Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning [47.30824944649112]
限られたリソースを持つ様々なベンダーに対して,ディープラーニングモデルの一般化能力を高めるために,新しいコントラスト学習手法を開発した。
バックボーンネットワークは、さまざまなベンダースタイルに不変機能を組み込むために、マルチスタイルでマルチビューで教師なしの自己学習スキームで訓練されている。
実験結果から,本手法は目視領域と目視領域の両方における検出性能を効果的に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-21T14:29:50Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
マンモグラム質量検出のための解剖学的グラフ畳み込みネットワーク(AGN)を提案する。
AGNはマンモグラムの質量検出用に調整されており、既存の検出手法を多視点推論能力で実現している。
2つの標準ベンチマークの実験によると、AGNは最先端のパフォーマンスを大幅に上回っている。
論文 参考訳(メタデータ) (2021-05-21T06:48:34Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z) - MammoGANesis: Controlled Generation of High-Resolution Mammograms for
Radiology Education [0.0]
我々は,512×512高分解能マンモグラムを合成するために,GAN(Generative Adversarial Network)を訓練する。
結果として得られるモデルは、教師なしの高レベルの特徴の分離につながる。
両盲検で平均AUC0.54を達成し,医療関連マンモグラムの生成能力を示す。
論文 参考訳(メタデータ) (2020-10-11T06:47:56Z) - Joint 2D-3D Breast Cancer Classification [22.031221319016353]
デジタルマンモグラフィー(Digital Mammograms、DMまたは2Dマンモグラフィー)とデジタル乳房トモシンセシス(DBTまたは3Dマンモグラフィー)は、乳がんの診断・診断に使用される2種類のマンモグラフィー画像である。
乳がん分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T19:08:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。