論文の概要: Mitigating the Noise Shift for Denoising Generative Models via Noise Awareness Guidance
- arxiv url: http://arxiv.org/abs/2510.12497v1
- Date: Tue, 14 Oct 2025 13:31:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 21:19:14.988499
- Title: Mitigating the Noise Shift for Denoising Generative Models via Noise Awareness Guidance
- Title(参考訳): 騒音認識誘導による生成モデルの騒音変化の緩和
- Authors: Jincheng Zhong, Boyuan Jiang, Xin Tao, Pengfei Wan, Kun Gai, Mingsheng Long,
- Abstract要約: ノイズアウェアネスガイダンス (NAG) は、事前に定義された騒音スケジュールと整合性を保つために、サンプリング軌道を明示的に制御する補正手法である。
NAGは一貫してノイズシフトを緩和し、主流拡散モデルの生成品質を大幅に改善する。
- 参考スコア(独自算出の注目度): 54.88271057438763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing denoising generative models rely on solving discretized reverse-time SDEs or ODEs. In this paper, we identify a long-overlooked yet pervasive issue in this family of models: a misalignment between the pre-defined noise level and the actual noise level encoded in intermediate states during sampling. We refer to this misalignment as noise shift. Through empirical analysis, we demonstrate that noise shift is widespread in modern diffusion models and exhibits a systematic bias, leading to sub-optimal generation due to both out-of-distribution generalization and inaccurate denoising updates. To address this problem, we propose Noise Awareness Guidance (NAG), a simple yet effective correction method that explicitly steers sampling trajectories to remain consistent with the pre-defined noise schedule. We further introduce a classifier-free variant of NAG, which jointly trains a noise-conditional and a noise-unconditional model via noise-condition dropout, thereby eliminating the need for external classifiers. Extensive experiments, including ImageNet generation and various supervised fine-tuning tasks, show that NAG consistently mitigates noise shift and substantially improves the generation quality of mainstream diffusion models.
- Abstract(参考訳): 既存の縮退生成モデルは、離散化された逆時間SDEやODEを解くことに依存している。
本稿では, サンプリング中の中間状態に符号化された雑音レベルと, 事前定義された雑音レベルとの相違点について検討する。
この不一致をノイズシフトと呼ぶ。
経験的分析により、現代の拡散モデルにおいてノイズシフトが広まっており、系統的バイアスが示され、分布外一般化と不正確なデノナイジング更新の両方による準最適生成が導かれることを示した。
この問題に対処するために,ノイズ認識誘導法 (NAG) を提案する。これは,事前に定義された騒音スケジュールと整合性を保つために,サンプリングトラジェクトリを明示的に操る,シンプルで効果的な補正法である。
さらに,ノイズ条件と雑音条件を併用したモデルとをノイズ条件のドロップアウトにより学習し,外部分類器の必要をなくしたNAGの分類器フリー版を導入する。
ImageNet生成や様々な教師付き微調整タスクを含む大規模な実験は、NAGが一貫してノイズシフトを緩和し、主流拡散モデルの生成品質を大幅に改善することを示している。
関連論文リスト
- Towards Robust Image Denoising with Scale Equivariance [10.894808298340994]
我々は,空間的一様雑音のトレーニングから,空間的非一様劣化の推論まで,モデルがより適応できるようになることを論じる。
本稿では,HNM (Heterogeneous Normalization Module) とIGM (Interactive Gating Module) の2つの主要コンポーネントを備える頑健なブラインド認知フレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-05T00:06:28Z) - Noise Conditional Variational Score Distillation [60.38982038894823]
騒音条件変化スコア蒸留(NCVSD)は, 予混合拡散モデルから生成消音剤を蒸留する新しい方法である。
この知見を変分スコア蒸留フレームワークに組み込むことで、生成的デノイザのスケーラブルな学習を可能にする。
論文 参考訳(メタデータ) (2025-06-11T06:01:39Z) - Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models [1.0579965347526206]
大規模言語モデル(LLM)は、しばしば不正確な、または誤解を招くコンテンツ・ハロシンを生成する。
noise-Augmented Fine-Tuning (NoiseFiT) は適応ノイズ注入を利用してモデルロバスト性を高める新しいフレームワークである。
NoiseFiTは、動的にスケールしたガウス雑音を用いて、高SNR(より堅牢)または低SNR(潜在的に過正規化)と同定された層を選択的に摂動する。
論文 参考訳(メタデータ) (2025-04-04T09:27:19Z) - Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - Noise-aware Speech Enhancement using Diffusion Probabilistic Model [35.17225451626734]
拡散モデルにおける逆過程を導出する雑音固有情報を抽出する雑音認識音声強調(NASE)手法を提案する。
NASEは任意の拡散SEモデルに一般化できるプラグイン・アンド・プレイモジュールであることが示されている。
論文 参考訳(メタデータ) (2023-07-16T12:46:11Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
ディープラーニングモデルには、大規模な実世界のトレーニングデータが必要です。
本稿では,これらの課題に対処するために拡散モデルを用いた新しい実音合成拡散器(RNSD)法を提案する。
論文 参考訳(メタデータ) (2023-05-23T12:56:01Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionADは、再構成サブネットワークとセグメンテーションサブネットワークからなる、新しい異常検出パイプラインである。
高速なワンステップデノゲーションパラダイムは、同等の再現品質を維持しながら、数百倍の加速を達成する。
異常の出現の多様性を考慮し、複数のノイズスケールの利点を統合するためのノルム誘導パラダイムを提案する。
論文 参考訳(メタデータ) (2023-03-15T16:14:06Z) - FINO: Flow-based Joint Image and Noise Model [23.9749061109964]
フローベースジョイントイメージとノイズモデル(FINO)
本研究では,フローベース・ジョイント・イメージ・アンド・ノイズモデル(FINO)を提案する。
論文 参考訳(メタデータ) (2021-11-11T02:51:54Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
勾配降下のノイズはパラメータ化モデルに対するトレーニングにおいて重要な暗黙の正則化効果をもたらす。
ミニバッチやラベルの摂動によって引き起こされるパラメータ依存ノイズはガウスノイズよりもはるかに効果的であることを示す。
分析の結果,パラメータ依存ノイズは局所最小値に偏りを生じさせるが,球状ガウス雑音は生じないことがわかった。
論文 参考訳(メタデータ) (2020-06-15T18:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。