論文の概要: Towards Robust Image Denoising with Scale Equivariance
- arxiv url: http://arxiv.org/abs/2508.02967v1
- Date: Tue, 05 Aug 2025 00:06:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.722193
- Title: Towards Robust Image Denoising with Scale Equivariance
- Title(参考訳): スケール等分散によるロバスト画像のデノナイズに向けて
- Authors: Dawei Zhang, Xiaojie Guo,
- Abstract要約: 我々は,空間的一様雑音のトレーニングから,空間的非一様劣化の推論まで,モデルがより適応できるようになることを論じる。
本稿では,HNM (Heterogeneous Normalization Module) とIGM (Interactive Gating Module) の2つの主要コンポーネントを備える頑健なブラインド認知フレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.894808298340994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite notable advances in image denoising, existing models often struggle to generalize beyond in-distribution noise patterns, particularly when confronted with out-of-distribution (OOD) conditions characterized by spatially variant noise. This generalization gap remains a fundamental yet underexplored challenge. In this work, we investigate \emph{scale equivariance} as a core inductive bias for improving OOD robustness. We argue that incorporating scale-equivariant structures enables models to better adapt from training on spatially uniform noise to inference on spatially non-uniform degradations. Building on this insight, we propose a robust blind denoising framework equipped with two key components: a Heterogeneous Normalization Module (HNM) and an Interactive Gating Module (IGM). HNM stabilizes feature distributions and dynamically corrects features under varying noise intensities, while IGM facilitates effective information modulation via gated interactions between signal and feature paths. Extensive evaluations demonstrate that our model consistently outperforms state-of-the-art methods on both synthetic and real-world benchmarks, especially under spatially heterogeneous noise. Code will be made publicly available.
- Abstract(参考訳): 画像のノイズ化の顕著な進歩にもかかわらず、既存のモデルは、特に空間的に変化するノイズによって特徴づけられるアウト・オブ・ディストリビューション(OOD)条件に直面する場合、分布内ノイズパターン以上の一般化に苦慮することが多い。
この一般化のギャップは根本的だが未解明の課題である。
本研究では,OODロバスト性向上のためのコアインダクティブバイアスとしてのemph{scale equivariance}について検討する。
我々は,空間的一様雑音のトレーニングから,空間的非一様劣化の推論まで,モデルがより適応できるようになることを論じる。
この知見に基づいて,HNM (Heterogeneous Normalization Module) とIGM (Interactive Gating Module) の2つの主要コンポーネントを備えた頑健なブラインド認知フレームワークを提案する。
HNMは特徴分布を安定化し、ノイズ強度の異なる特徴を動的に補正する一方、IGMは信号と特徴経路間のゲート相互作用による効果的な情報変調を促進する。
特に空間的不均質雑音下では,我々のモデルは,合成および実世界のベンチマークにおいて常に最先端の手法より優れていることを示す。
コードは公開されます。
関連論文リスト
- Diffusion-Based Limited-Angle CT Reconstruction under Noisy Conditions [10.287171164361608]
角投影の欠如は、再構成された画像の不完全なシノグラムやアーティファクトに繋がる。
本稿では, 平均回帰微分方程式(MR-SDE)を用いて, 角ビューの欠落を解消する拡散型フレームワークを提案する。
現実的な雑音下でのロバスト性を改善するために,推論時間不確実性を明示的にモデル化する新しいノイズ認識機構を提案する。
論文 参考訳(メタデータ) (2025-07-08T03:58:52Z) - A TRPCA-Inspired Deep Unfolding Network for Hyperspectral Image Denoising via Thresholded t-SVD and Top-K Sparse Transformer [20.17660504535571]
本稿では,低ランクとスパースという2つの密に統合されたモジュール間のステージワイドな交互化を実現する新しいディープ展開ネットワーク(DU-TRPCA)を提案する。
合成および実世界のHSIの実験により、DU-TRPCAは高密度混合雑音下で最先端の手法を超越していることが示された。
論文 参考訳(メタデータ) (2025-06-03T02:01:39Z) - Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models [1.0579965347526206]
大規模言語モデル(LLM)は、しばしば不正確な、または誤解を招くコンテンツ・ハロシンを生成する。
noise-Augmented Fine-Tuning (NoiseFiT) は適応ノイズ注入を利用してモデルロバスト性を高める新しいフレームワークである。
NoiseFiTは、動的にスケールしたガウス雑音を用いて、高SNR(より堅牢)または低SNR(潜在的に過正規化)と同定された層を選択的に摂動する。
論文 参考訳(メタデータ) (2025-04-04T09:27:19Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
本稿では,潜時拡散モデルにおける周波数制御について検討する。
本稿では,低周波成分と高周波成分にノイズ差を分解する新しいフレームワークFreScaを紹介する。
FreScaはモデルの再トレーニングやアーキテクチャの変更なしに動作し、モデルとタスクに依存しない制御を提供する。
論文 参考訳(メタデータ) (2025-04-02T22:03:11Z) - Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
擬似ラベルノイズは主に不安定なサンプルに含まれており、ほとんどのピクセルの予測は自己学習中に大きく変化する。
我々は, 安定・不安定な試料を効果的に発見する, SND(Stable Neighbor Denoising)アプローチを導入する。
SNDは、様々なSFUDAセマンティックセグメンテーション設定における最先端メソッドよりも一貫して優れている。
論文 参考訳(メタデータ) (2024-06-10T21:44:52Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Effective Causal Discovery under Identifiable Heteroscedastic Noise Model [45.98718860540588]
因果DAG学習は、最近精度と効率の両面で有望な性能を達成した。
本稿では,変数間のノイズ分散の変動を考慮したDAG学習のための新しい定式化を提案する。
次に、最適化の難しさに対処する効果的な2相反復DAG学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-20T08:51:58Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) は、推論中に単純だが効果的なステップを付加したコンパクトネットワークである。
OMSは画像の忠実度を高め、トレーニングと推論の二分法を調和させ、元のモデルパラメータを保存する。
トレーニングが完了すると、同じ潜在ドメインを持つ様々な事前訓練された拡散モデルが同じOMSモジュールを共有することができる。
論文 参考訳(メタデータ) (2023-11-27T12:02:42Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
ディープラーニングモデルには、大規模な実世界のトレーニングデータが必要です。
本稿では,これらの課題に対処するために拡散モデルを用いた新しい実音合成拡散器(RNSD)法を提案する。
論文 参考訳(メタデータ) (2023-05-23T12:56:01Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
本研究では,HSI復調のためのロバストな主成分分析のための新しい非特異なアプローチを提案する。
我々は、ランクとスパースコンポーネントの両方に対する正確な近似を開発する。
シミュレーションと実HSIの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-01-08T11:48:46Z) - Multiview point cloud registration with anisotropic and space-varying
localization noise [1.5499426028105903]
我々は,高異方性定位雑音で劣化した複数点の雲を登録する問題に対処する。
既存の手法は、空間不変等方性雑音の暗黙の仮定に基づいている。
ノイズハンドリング戦略は,高レベルの異方性雑音に対するロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2022-01-03T15:21:24Z) - Noisy Recurrent Neural Networks [45.94390701863504]
入力データによって駆動される微分方程式の離散化として,隠れ状態に雑音を注入することによって訓練されたリカレントニューラルネットワーク(RNN)について検討する。
合理的な仮定の下では、この暗黙の正則化はより平坦なミニマムを促進し、より安定な力学を持つモデルに偏りを呈し、分類タスクではより大きな分類マージンを持つモデルを好む。
本理論は, 各種入力摂動に対するロバスト性の向上と, 最先端性能の維持を両立させる実証実験により支持された。
論文 参考訳(メタデータ) (2021-02-09T15:20:50Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
勾配降下のノイズはパラメータ化モデルに対するトレーニングにおいて重要な暗黙の正則化効果をもたらす。
ミニバッチやラベルの摂動によって引き起こされるパラメータ依存ノイズはガウスノイズよりもはるかに効果的であることを示す。
分析の結果,パラメータ依存ノイズは局所最小値に偏りを生じさせるが,球状ガウス雑音は生じないことがわかった。
論文 参考訳(メタデータ) (2020-06-15T18:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。